Iron Deficiency

Photo of a female with long hair standing on a beach with her hands over her face.

Iron is well known for the transportation of oxygen throughout the body as previously discussed, however, the link between iron deficiency and ADHD is not as well understood.

Attention-deficit/hyperactivity disorder (ADHD) is a condition affecting 12% of school-aged children and a growing number of adults. Impulsive behaviour, hyperactivity and/or inattention are common issues with ADHD. The prevalence of ADHD in student and elite athletes is suggested to be as high as 8% in certain sports. Athletes with ADHD may naturally excel in sports that require quick movements and reactive decision-making such as basketball, netball and baseball due to these athletes’ inherent impulsivity. Physical activity through playing sports also improves the symptoms of ADHD such as inattention, depressive mood, anxiety and impaired cognition.

Managing ADHD

In most cases, psychosocial interventions are used to manage ADHD. Medications (methylphenidate and amphetamine compounds) may also be used to activate dopamine and noradrenergic neurotransmitter pathways in the brain. This activation may lead to improved attention and concentration but also often come with side effects including increased heart rate and blood pressure, abdominal pain, headache, anorexia, sleep impairment, weight loss, jitteriness and constipation. If not addressed these side effects can impair performance and/or threaten athlete safety.

As both iron and zinc deficiencies impact neurologic functions (poor memory, inattentiveness, and impulsiveness), finicky appetite, and mood changes (sadness and irritability), nutritional adequacy is especially important in ADHD patients. Altered levels of iron and zinc increase the susceptibility, aggravation and progression of ADHD. In children, the severity of iron deficiency has been linked to a 30% increase in inattentive, impulsive, and hyperactive behaviours.

Evidence suggests patients with ADHD may experience lower stores of iron (ferritin) in the liver. This is proposed to be due to higher levels of hepcidin in ADHD patients.  In our previous blog, we explain how Hepcidin is a peptide hormone that acts as the master regulator in iron metabolism and storage in the liver. Hepcidin also tightly influences red blood cell production.

Ferritin levels below 30ng/mL are related to sleep disturbances and a higher incidence of restless leg syndrome which may further compound behavioural issues in ADHD patients. Another mineral which shares the same carrier protein as iron is zinc. Zinc deficiency is also linked to inflammatory prostaglandins, essential enzymes and changes in melatonin and dopamine.

Whilst a food-first approach is preferred, individuals with high nutrient demands may benefit from targeted supplementation.  Iron-rich foods such as kangaroo, red meats, chicken, salmon and zinc-rich foods have been extensively discussed in relation to immunityanaemia and plant-based athletes.

Supplementation has been shown to be effective in individuals with iron deficiency, especially in the inattentive subtype of ADHD. Iron supplementation has also been shown to decrease the risk of cardiovascular events during treatment with ADHD drugs. A combination of iron and zinc supplements has been shown to be superior to iron alone in alleviating ADHD symptoms, as well as improvement in performance in IQ tests.

Hundreds of athletes have used our handy anaemia tool to help determine the likely risk of having low iron or anaemia. This short quiz is handy if you have experienced iron deficiency in the past and are unsure if your iron stores may be declining.

Want to know more? Contact the Athlete Sanctuary and learn how we can help you.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

 

References

  1. Robberecht, H., Verlaet, A. A., Breynaert, A., De Bruyne, T., & Hermans, N. (2020). Magnesium, iron, zinc, copper and selenium status in attention-deficit/hyperactivity disorder (ADHD). Molecules, 25(19), 4440.
  2. Han, D. H., McDuff, D., Thompson, D., Hitchcock, M. E., Reardon, C. L., & Hainline, B. (2019). Attention-deficit/hyperactivity disorder in elite athletes: a narrative review. British Journal of Sports Medicine, 53(12), 741-745.
  3. Conant-Norville DO, Tofler IR. Attention deficit/hyperactivity disorder and psychopharmacologic treatments in the athlete. Clin Sports Med 2005;24:829–43
  4. Hamilton RM, Rosenthal E, Hulpke-Wette M, et al. Cardiovascular considerations of attention deficit hyperactivity disorder medications: a report of the European Network on hyperactivity disorders work group, European attention deficit hyperactivity disorder guidelines group on attention deficit hyperactivity disorder drug safety meeting. Cardiol Young 2012;22:63–70
  5. Konofal, E., Lecendreux, M., Arnulf, I., & Mouren, M. C. (2004). Iron deficiency in children with attention-deficit/hyperactivity disorder. Archives of pediatrics & adolescent medicine, 158(12), 1113-1115.
  6. Yazici, K.U.; Yazici, I.P.; Ustundag, B. Increased Serum Hepcidin Levels in Children and Adolescents with Attention Deficit Hyperactivity Disorder. Clinical Psychopharmacology Neuroscience. 2019, 17, 105–112.
  7. Abou-Khadra, M.K.; Amin, O.R.; Shaker, O.G.; Rabah, T.M. Parent-reported sleep problems, symptom ratings, and serum ferritin levels in children with attention-deficit/hyperactivity disorder: A case control study. BMC Pediatrics 2013, 13, 217.
  8. Arnold, L.E.; DiSilvestro, R.A. Zinc in Attention-Deficit/Hyperactivity Disorder. J. Child Adolesc. Psychopharmacol. 2005, 15, 619–627.
  9. Soto-Insuga, V.; Calleja, M.; Prados, M.; Castano, C.; Losada, R.; Ruiz-Falco, M. Role of iron in the treatment of attention deficit-hyperactivity disorder. An. Paediatrician . 2013, 79, 230–235.
  10. Parisi, P.; Villa, M.P.; Donfrancesco, R.; Miano, S.; Paolino, M.C.; Cortese, S. Could treatment of iron deficiency both improve ADHD and reduce cardiovascular risk during treatment with ADHD drugs? Hypotheses, 2012, 79, 246–249.
  11. El-Baz, F. M., Youssef, A. M., Ramadan, D., & Youssef, W. Y. (2019). Association between circulating zinc/ferritin levels and parent Conner’s scores in children with attention deficit hyperactivity disorder. European Psychiatry, 62, 68-73.
  12. Tan, L.-N.; Wei, H.-Y.; Zhang, Y.-D.; Lu, A.-L.; Li, Y. (2011). Relationship between serum ferritin levels and susceptibility to attention deficit hyperactivity disorder in children: A Meta analysis. Zhongguo Dang Dai Er Ke Za Zhi. 13, 722–724.
  13. Öner, P.; Dirik, E.B.; Taner, Y.; Caykoylu, A.; Anlar, O. (2007). Association between low serum ferritin and restless legs syndrome in patients with attention deficit hyperactivity disorder. Tohoku J. Exp. Med. 213, 269–276
iron and energy production

Iron and energy production are integral to sports performance. When it comes to physical performance, many female athletes find themselves caught between balancing dietary preferences and ensuring that iron intake is adequate. This is particularly the case for plant-based athletes or athletes with limited intake of red meat.

Intense physical exertion increases the body’s need for iron, and repeated sessions that deplete the body may lead to iron deficiency anaemia with inadequate iron intake or poor absorption. As previously mentioned, iron deficiency may contribute to exhaustion and will likely have an adverse effect on training and competition.

Iron is an essential mineral that plays a vital role in metabolism and the transportation of oxygen through your body. Up to 65% of the body’s iron is found in haemoglobin. Haemoglobin is the substance found in red blood cells that delivers oxygen from your lungs to your body tissues via your bloodstream. This means that low haemoglobin levels lead to decreased oxygen delivery to the body’s tissues, working muscles and organs.

Iron is also essential for the formation of myoglobin in muscle cells, a protein that carries and stores oxygen in muscle tissue. As oxygen is needed for aerobic metabolism, it’s easy to understand how low myoglobin (oxygen transportation around the muscles) impairs your aerobic function and ultimately, physical performance. It is also essential for brain health, physical growth and the synthesis of several hormones in your body. If you aren’t sure of the common signs of iron deficiency, you may like to read our previous blog here.

Put simply, if you are suffering from anaemia or are iron deficient your muscles will receive less oxygen and produce more lactic acid during training sessions, and your health and wellbeing will be severely compromised and could lead to serious health issues.

Energy production takes place in the mitochondria as part of the electron transport chain. In this process, a charged gradient is created across the membrane, which in turn drives the synthesis of energy as adenosine triphosphate (ATP).  Both haem animal and plant-based forms of iron are important for the protein complexes within the electron transport chain.

Iron is found in mitochondria within skeletal muscles storing 10–15% of the body’s iron. Iron is particularly concentrated in type-1 slow-twitch muscle fibres. These fibres have high mitochondria concentrations, slow contraction rates and a reliance on aerobic metabolism and oxidative phosphorylation.

Endurance athletes typically have more slow twitch muscle fibres than type-2 fibres.

Vegetarian or plant-based athletes are at a much higher risk of iron deficiency and may need significantly more iron in their diet,  due to the reduced bioavailability of iron from plant-based foods. Knowledge of sources of iron-rich foods and beneficial combinations of foods can be helpful. For example: pairing plant-based iron-rich foods with a source of vitamin C can increase iron absorption.

It is important to remember that your iron deficiency may have nothing to do with your iron intake and other physiological and environmental circumstances may be contributing to iron deficiency.

Tools such as our  Anaemia Quiz may help to identify if you are at risk of iron deficiency or anaemia.

Want to know more? Contact the Athlete Sanctuary and learn how we can help.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

References

Alaunyte I, Stojceska V, Plunkett A. (2015). Iron and the female athlete: a review of dietary treatment methods for improving iron status and exercise performance. J Int Soc Sports Nutr. 12. doi:10.1186/s12970-015-0099-2

Halas M. (2009): Special Considerations for Vegans and Vegetarians. The Plant-Based Boost Nutrition Solutions for Athletes and Exercise Enthusiasts. Middletown, DE: Super Kids Nutrition Incorporated.

Semenova, E. A., Miyamoto-Mikami, E., Akimov, E. B., Al-Khelaifi, F., Murakami, H., Zempo, H., … & Ahmetov, I. I. (2020). The association of HFE gene H63D polymorphism with endurance athlete status and aerobic capacity: novel findings and a meta-analysis. European Journal of Applied Physiology, 120(3), 665-673.

Stugiewicz, M., Tkaczyszyn, M., Kasztura, M., Banasiak, W., Ponikowski, P., & Jankowska, E. A. (2016). The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. European Journal of heart failure18(7), 762-773. 

 

Hepcidin and iron regulation

Have you ever heard of hepcidin? It’s worth understanding mainly if you are a female athlete or someone who suffers from iron deficiency anaemia.

Iron is an essential element for many biological processes. Too little iron can have many detrimental effects on your health and sports performance. We have previously discussed the impact iron deficiency and anaemia has on thyroid health and poor immunity. Excess iron can be toxic, so regulating iron levels are vital to a healthy, balanced body.

Hepcidin is an iron-regulating peptide hormone that’s produced in your liver. It works to control the delivery of iron to your blood from food through the lining of the intestines. It is the master regulator in iron metabolism and the balance between iron storage and the absorption better known as iron homeostasis. Hepcidin also tightly influences red blood cell production.

When hepcidin levels are unusually high, it reduces intestinal iron absorption and red blood cell production. Low hepcidin levels stimulate iron absorption, and iron supply to bone marrow and promote hemoglobin and red blood cell production. Iron deficiency is common among female athletes, and is much higher than their male counterparts. It is often cited as being a result of the menstrual cycle during premenopausal years. Depleted iron stores can have many adverse effects, including poor performance, low energy levels, and general well-being.

Some research has shown that active females with compromised iron possess an inherent protective mechanism once iron deficient. This adaptation allows the body to adjust to a reduced iron supply. It is proposed iron depletion may be a combination of exercise-induced losses and hepcidin accumulation.

Running is known to acutely increase hepcidin levels (peaking three hours post-exercise), therefore reducing iron absorption and recycling.

Timing iron supplementation to correlate with low hepcidin levels may enhance absorption and positively impact iron levels in the blood. In practical terms, if you exercise in the morning, you might consider taking your iron supplement straight after you exercise, before hepcidin rises.

Hundreds of athletes have used our handy anaemia quiz to help determine the likely risk of having low iron or anaemia. we encourage you to use this free tool if you have a history of iron deficiency or you are unsure if your iron stores may be declining.

Want to know more? Contact the Athlete Sanctuary to learn how we can support you further. Book an appointment here.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

 

References

Ganz, T. (2016). Hepcidin. Rinsho Ketsueki57(10), 1913-1917. DOI: 10.11406/rinketsu.57.1913.

Sim, M., Dawson, B., Landers, G., Trinder, D., & Peeling, P. (2014). Iron regulation in athletes: exploring the menstrual cycle and effects of different exercise modalities on hepcidin production. International journal of sport nutrition and exercise metabolism24(2), 177-187.https://pubmed.ncbi.nlm.nih.gov/24225901/

Alfaro-Magallanes, V. M., Benito, P. J., Rael, B., Barba-Moreno, L., Romero-Parra, N., Cupeiro, R. FEMME Study Group. (2020). Menopause Delays the Typical Recovery of Pre-Exercise Hepcidin Levels after High-Intensity Interval Running Exercise in Endurance-Trained Women. Nutrients12(12), 3866. https://pubmed.ncbi.nlm.nih.gov/33348847/

Nirengi, S., Taniguchi, H., Ishibashi, A., Fujibayashi, M., Akiyama, N., Kotani, K., & Sakane, N. (2021). Comparisons between serum levels of hepcidin and leptin in male college-level endurance runners and sprinters. Frontiers in Nutrition8. https://pubmed.ncbi.nlm.nih.gov/34136516/

Pagani, A., Nai, A., Silvestri, L., & Camaschella, C. (2019). Hepcidin and anemia: a tight relationship. Frontiers in physiology, 1294.  https://www.frontiersin.org/articles/10.3389/fphys.2019.01294/full

Sim, M., Dawson, B., Landers, G., Trinder, D., & Peeling, P. (2014). Iron regulation in athletes: exploring the menstrual cycle and effects of different exercise modalities on hepcidin production. International journal of sports nutrition and exercise metabolism24(2), 177-187.  https://pubmed.ncbi.nlm.nih.gov/24225901/[/vc_column_text][/vc_column][/vc_row]

unusual symptoms of iron deficiency

Anaemia caused by iron deficiency is a condition in which there is not enough iron to form enough healthy red blood cells of sufficient size to carry oxygen to the tissues of the body.

Iron plays a crucial physiological role in your body. But despite its importance, iron deficiency anaemia is still a common problem among female athletes. Iron deficiency can have major adverse effects on your well-being and your athletic capacity.

It’s not uncommon for iron deficiency anaemia to be quite mild and go unnoticed. But women – and especially active, athletic women – are very prone to this condition. If gone untreated, the anaemia will worsen, and the signs and symptoms will intensify.

Without enough iron, your body can’t produce enough hemoglobin – the substance in red blood cells that enables them to carry oxygen – and as a result iron deficiency anaemia can leave you short of breath, headachy, tired, and unable to complete a training session or event with your usual enthusiasm. Iron deficiency is missed in 47-82% of females and 95-100% of male adolescents and young adult patients.

10 signs of iron deficiency  

*Fatigue that starts even after a good night’s sleep

*Restless legs

*Nausea

*Bruising

*Pale or itchy skin

*Hair loss

*Shortness of breath

*Poor concentration and decision-making, “foggy brain”

*Rapid heartbeat or “fluttering feeling”

*Headache, dizziness or light-headedness

Keep in mind this is just a small number of the  75 known symptoms of iron deficiency. Unusual cravings for non-nutritive substances, such as ice and dirt

CAUSES OF IRON DEFICIENCY

Low or little dietary intake of iron-rich foods is often blamed as the key factor contributing to iron deficiency. With plant-based eating increasing in popularity amongst the athlete community, this is a key factor for many athletes. Lack of awareness of how to consume foods that enhance iron absorption or knowledge on sources of plant-based iron-rich foods can render an athlete with symptoms in a matter of months.  Poor intake however is not the only cause of iron deficiency anaemia.

*Blood loss. Blood contains iron within red blood cells. If you lose blood, you lose some iron. Women with heavy periods are at risk of iron deficiency anaemia because they lose blood during menstruation. Athletes who are frequent blood donors are at increased risk for iron deficiency.1 Athletes who regularly use nonsteroidal anti-inflammatories are likely to have increased gastrointestinal blood losses increasing their risk of iron deficiency3.

*An inability to absorb iron. Dietary iron is absorbed into the bloodstream through the small intestine. An intestinal disorder, such as celiac disease, stomach ulcers, ulcerative colitis or Crohn’s disease, which affects the intestine’s ability to absorb nutrients from digested food, can lead to iron-deficiency anaemia. If part of the small intestine has been bypassed or removed surgically, the ability to absorb iron and other nutrients will be reduced. Inflammation in the digestive tract is aligned with symptoms such as bloating, gas, diarrhoea or constipation, food intolerances, or loud gurgling, and may signal the integrity of the gut lining may be compromised. Without good integrity, absorption of nutrients is also reduced.

*Low stomach acid. Adequate stomach acid (hydrochloric acid- HCL) is required to break down minerals such as iron and extract them from the food we eat. Low stomach acid is a common issue following times of prolonged physical or emotional stress and can be found alongside iron deficiency.

*Iron stealers. Bacteria overgrowth, Helicobacter pylori, and parasites within the digestive tract can impact the way iron is absorbed and may contribute to blood loss, therefore, contributing to iron deficiency over time.

*Post natal– Without iron supplementation, iron deficiency anaemia occurs in many pregnant women due to the iron requirements of the mother and baby. Post-natal iron deficiency can occur as many women are naturally preoccupied with their new arrival and forget to have adequate medical checkups for themselves. Fatigue is often experienced by mother’s and therefore iron deficiency can go undetected for many months. This depletes not only the mother but also the baby’s supply of iron who depends on the mother for iron for the first 6 months of life until solids are introduced.

Hundreds of athletes have used our handy anaemia quiz to help determine the likely risk of having low iron or anaemia. Find out if you are getting low on iron here.

Want to know more? Contact the Athlete Sanctuary to learn how we can support you further.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

 

References

  1. Choe, Y. H., Kwon, Y. S., Jung, M. K., Kang, S. K., Hwang, T. S., & Hong, Y. C. (2001). Helicobacter pylori-associated iron-deficiency anemia in adolescent female athletes. The journal of Pediatrics, 139(1), 100-104.
  2. Eiduson, R., Heeney, M. M., Kao, P.-C., London, W. B., Fleming, M. D., & Shrier, L. A. (2022). Prevalence and Predictors of Iron Deficiency in Adolescent and Young Adult Outpatients: Implications for Screening. Clinical Pediatrics, 61(1), 66–75. https://doi.org/10.1177/00099228211059647
  3. Safarova, K. N., Dorogoykina, K. D., & Rebrov, A. P. (2019). Is anemia a clinical marker of NSAID-induced upper gastrointestinal lesions in patients with spondyloarthritis?. Almanac of Clinical Medicine, 47(5), 410-418. https://doi.org/10.18786/2072-0505-2019-47-037
  4. Hinton P. S. (2014). Iron and the endurance athlete. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolism, 39(9), 1012–1018. https://doi.org/10.1139/apnm-2014-0147
  5. Mayo Clinic (2022). Iron Deficiency anemia. https://www.mayoclinic.org
  6. Sim, M., Dawson, B., Landers, G., Trinder, D., & Peeling, P. (2014). Iron regulation in athletes: exploring the menstrual cycle and effects of different exercise modalities on hepcidin production. International journal of sports nutrition and exercise metabolism, 24(2), 177–187. https://doi.org/10.1123/ijsnem.2013-0067

 

relative energy deficiency

Relative Energy Deficiency in Sport – or RED-S as it is known – is caused when there’s a negative balance between dietary energy intake and the energy output needed to promote optimal health, performance, growth and daily life.

Up until 2014 RED-S was referred to as the female athlete triad – disordered eating, menstrual disturbances and low bone density. At this time the International Olympic Committee updated their position statement with the new term (RED-S) to be far more reflective of the wider-spread effects in both female and male athletes – on performance and throughout the body.

In 2018 the IOC published the RED-S Consensus Statement Update.

More than 10% of athletes experience RED-S throughout their career, yet despite its potential to have such adverse effects, RED-S is still only just becoming widely recognised and discussed within a majority of sports.

Symptoms of RED-S

There are many physical symptoms of RED-S, including:

  • Fatigue
  • Recurring illness
  • Difficulties staying warm in the winter and cool in summer months
  • Poor sleep quality
  • Stress fractures and low bone mineral density, and impaired accumulation of peak bone mass (PBM)
  • Weight loss, or below healthy weight
  • Growth restriction in junior and teenage athletes
  • Disordered eating or eating disorders such as bulimia or anorexia, orthorexia, restrictive disorders or recurrent dieting/fasting
  • Digestion issues
  • Vitamin and mineral deficiencies
  • Metabolic disturbance
  • Menstrual disfunction

Relative Energy Deficiency in SportBut REDS can also have far-reaching behavioural and psychological effects as well, including:

  • Pre-occupation and constant discussion around food
  • Poor sleep patterns
  • Restricting or strict control over food intake
  • Overtraining or struggling to take rest days
  • Impaired judgement, coordination and concentration
  • Recurrent soft tissue injury
  • Irrational behaviour
  • Fear of food and weight gain
  • Severe anxiety
  • Withdrawing or becoming reclusive
  • Reduction in motivation
  • Depression

REDS can have an incredibly adverse long-term effect on athletic performance, including an increased risk of injury and decreased training and performance responses. These effects can include:

  • Decreased muscle strength
  • Decreased endurance performance
  • Impaired judgement
  • Decrease in coordination
  • Decrease in concentration
  • Decrease in glycogen stores
  • Negative impacts on muscle recovery
  • Poor muscle growth
  • Increased risk of injury

WHAT ARE THE LONG-TERM EFFECTS OF REDS?

The majority of our bone density is formed during our teenage years. If our bone density formation is impacted during our adolescence or early in our adult years, it can lead to issues with bone weakness and osteoporosis later on in life.

Longer-term, REDS can also have a negative impact on fertility, thyroid function, cardiovascular function, and mental health.

The good news is that most of the negative consequences of RED-S can be reversed if picked up early.

WHAT ARE THE COMMON MYTHS SURROUNDING REDS?

The common perception that athletes with RED-S have an eating disorder is false.  Although eating disorders are associated with RED-S not all athletes with eating disorders have RED-S and not all athletes with RED-S have an eating disorder.

It’s true to say that athletes with RED-S can present as underweight- but this is not true in all situations. RED-S can exist without the athlete appearing to be underweight.

RED-S is also not something that just female athletes suffer from. All athletes competing in sports with higher training volumes or weight category restrictions are at a higher risk of developing RED-S. This can include athletes competing in sports that can be judged by aesthetics including figure skating, gymnastics and synchronised swimming, and body weight-dependent sports including long-distance running, mountain biking, and cycling, and weight classed sports such as lightweight rowing and marshall arts.

In one study 44% of ultra-endurance runners were identified as being at risk of developing RED-S while 39% of elite female sprinters should signs of RED-S. 

“RED-S can occur in athletes of any competitive status. Among world-class endurance athletes, 37% of females presented with amenorrhea and 40% of males with testosterone in the lowest quartile range indicative of RED-S, which is similar to the reported 40% of Australian female athletes competing at the 2016 Rio Olympic games who were identified as at risk of RED-S.  Similarly, among recreational female exercisers, 45% had risk factors associated with RED-S.” (Sports Information Resource Centre).

WHAT SHOULD I LOOK OUT FOR?

The most important piece of advice when it comes to RED-S is – listen to your body. Don’t ignore niggles and definitely don’t skimp on sleep and recovery. You should also:

  • Monitor menstrual cycles
  • Think about your relationship with food and/or exercise
  • Be mindful of your eating patterns: disordered eating to eating disorder.
  • Notice your exercise dependence
  • Monitor your behaviour, mood and sleep patterns
  • Notice change in clothing fit
  • Be aware of growth and development
  • Note injuries, illness and gastrointestinal issues
  • Athletic performance (stagnation-deterioration)
  • Try to be flexible in your approach

WHERE TO GET HELP

We appreciate that talking about many of the symptoms associated with RED-S can be difficult.  Our Sports Naturopath and Holistic Coach Kate Smyth has extensive lived experience with REDS in elite sport and provides a discreet and confidential platform to share your concerns.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

 

Resources

Athletes in Balance 

Train Brave 

Butterfly Foundation 

Eating Disorders 

The Sport Information Resource Centre: SIRC,

Berg, S. E. (2021). The Relationship between Eating Disorders, Weight Control Methods, and Body Satisfaction in Elite Female Runners Competing at the 2020 US Olympic Marathon Trials.

Sygo, J., Coates, A. M., Sesbreno, E., Mountjoy, M. L., & Burr, J. F. (2018). Prevalence of indicators of low energy availability in elite female sprinters. International Journal of Sport nutrition and exercise metabolism28(5), 490-496.

 

 

Iron and thyroid function

Iron deficiency is one of the most common issues athletes face.  Iron and thyroid health go hand in hand and the effects of exercise on the thyroid gland and hormones are not well understood.

Iron and thyroid function 
Undiagnosed iron deficiency presents an increased risk of impaired thyroid function. Active women have high-energy lives, managing work, family and training, and many will accept low energy and brain fog as simply a result of being overworked or as an inevitable part of hormonal changes.

However, low thyroid function, iron deficiency, overtraining and hormonal changes also present with many of the same symptoms.

Signs that your thyroid function may be underactive (hypothyroid) include fatigue, unexplained weight gain, headaches, low blood pressure, dry skin, constipation and cold intolerance. These early signs of cellular hypothyroidism can appear when blood pathology remains within standard ranges.

As with most chronic issues, there are multiple factors that may contribute to dysfunction.

The Link between Exercise and Thyroid Function

In athletes, endurance and high-volume training promotes thyroid function. During exercise, your hypothalamus stimulates the pituitary gland to secrete thyroid-stimulating hormone (TSH), which in turn signals your thyroid to synthesise and release the thyroid storage hormone T4 and active thyroid hormone T3.

These hormones influence your body’s metabolism and allow it to increase exercise intensity. Over time, this repeated, high demand of your thyroid during prolonged intense exercise may impact your thyroid function, causing it to slow down and consequently lose the ability to produce sufficient hormones.

Iron and Thyroid Function

Normal thyroid function is dependent on several nutrients to regulate the synthesis of thyroid hormones. Iodine, iron, tyrosine, selenium, and zinc are needed to facilitate the conversion of T4 to T3 . A deficiency of any one of these nutrients would result in reduced T3 production, causing you to experience hypothyroid symptoms. Vitamins A and D also play important roles in cell receptor behaviour to regulate thyroid hormone metabolism.

While iodine is the key mineral for healthy thyroid function (read more…here)  it is not uncommon to find iron deficiency in hypothyroidism. Although widely recognised for its influence on red blood cell production, iron is also an important component of thyroid peroxidase, an enzyme essential for thyroid hormone biosynthesis.

Iron deficiency interferes with the normal functioning of the thyroid, contributing significantly to fatigue, exercise intolerance and lightheadedness.

Increased menstrual bleeding can lead to iron deficiency. Many of us dismiss low energy as a symptom of a busy, active lifestyle and so iron deficiency frequently goes undiagnosed in perimenopausal women.  For athletes, iron plays a critical role in exercise performance as outlined in our blog “Increase your iron absorption and rebound from anaemiahere

The most common causes of iron deficiency include inadequate dietary iron intake, inflammation, poor iron absorption in the gut, parasites, iron loss through sweat, urination and faeces, blood loss through menstruation. Pregnancy, breastfeeding or high-volume exercise will also significantly increase iron demands. Take our free anaemia quiz to see if you may be iron deficient here

Thyroid Function and Sex Hormones in Women

Your thyroid function is sensitive to fluctuations in sex hormone levels, particularly oestrogen. Oestrogen stimulates the production of the thyroid hormone precursor, thyroglobulin, and increases the protein that carries thyroid hormones in your blood.

As oestrogen changes (such as during peri-menopause) so too does thyroid hormones, which play an important role in metabolism, muscle strength, energy production and expenditure, heart function, and temperature regulation.

As oestrogen levels rise and fall later in life, menstruation may become irregular and heavier. Peri-menopausal women may experience symptoms for over ten years as described in our blog on “Natural solutions for menopausehere .

During peri-menopause declining oestrogen may impact thyroid function and can lead to inadequate production and circulation of thyroid hormones.

Exercise During Hormonal Changes

Despite common misconceptions, women can train and perform well throughout peri-menopause, and beyond, if they listen to their bodies and be mindful of maintaining adequate dietary intake of key nutrients. It is important to recognise that both iron deficiency, thyroid function and hormonal changes can impact your ability to exercise.

Years of consistent exercise accumulate like pages in a book. As a mature you know your body very well. The pathway to success utilises your book of wisdom and skills. Mature athletes can benefit from greater recovery, individualized strength and conditioning and modified programs. Focussing on the balance between training intensity and volume will help you to achieve your desired goals.

If you suspect your symptoms are impacting on your quality of life and sport, it’s time to seek support to help you navigate the journey.

Blood serum pathology and functional tissue mineral testing can be a good starting point due to the critical role nutrients play in hormonal and thyroid function.

With the right self-care and a holistic approach to health, you can continue to achieve your life goals and physical challenges irrespective of hormonal changes.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

 

References

  1. Kawicka, A., & Regulska-Ilow, B. (2015). Metabolic disorders and nutritional status in autoimmune thyroid diseases. Postepy Higieny i Medycyny Doswiadczalnej, 69, 80–90.
  2. Luksch, J. R., & Collins, P. B. (2018). Thyroid Disorders in Athletes. Current Sports Medicine Reports, 17(2), 59–64.
  3. Santin, A. P., & Furlanetto, T. W. (2011). Role of estrogen in thyroid function and growth regulation. Journal of Thyroid Research, 2011.
  4. Soliman, A. T., De Sanctis, V., Yassin, M., Wagdy, M., & Soliman, N. (2017). Chronic anemia and thyroid function. Acta Biomedica, 88(1), 119–127.
  5. Wouthuyzen-Bakker, M., & Van Assen, S. (2015). Exercise-induced anaemia: A forgotten cause of iron deficiency anaemia in young adults. British Journal of General Practice, 65(634), 268–269.

 

Mineral testing for athletes

Mineral and heavy metal testing can help to gain a better understanding of what metals may be impacting on health and what minerals are required to increase to enhance performance and overall health. Optimal nutritional balance is essential for the function of every cell and system in your body.  Obtaining feedback on mineral absorption is just one of the benefits of mineral testing for athletes.

Mineral testing provides a wider perspective on an individual’s overall health status than just urine, blood or stool pathology testing alone although it is always useful to use both tests in conjunction with each other. Mineral testing can be used as an early detector of subclinical issues and provide useful guidelines in terms of how to best support the body when annoying symptoms such as fatigue, insomnia and digestion issues persist.

In clinical practice, test results are always accompanied by a thorough assessment of your overall health and nutritional intake to provide meaningful context to data and to give you a clear understanding of where and how deficits may be occurring.

A mineral analysis may provide insight into your current health status, identify potential areas of concern and provide suggestions around dietary and supplemental measures that may improve your health now and prevent issues in the future.

Mineral testing for athletes- useful insights

Mineral testing provides a snapshot of how the body is utilizing the nutrients obtained from your food and provides an analysis of 13 key minerals. Trends in nutrient deficiencies or excessive mineral levels may indicate poor activation and non-beneficial storage of nutrients.

To demonstrate this point, let’s take a look at calcium. Calcium will be maintained within a very narrow range in blood serum due to its life-supporting roles in managing heart rate, nerves, and muscle function. However, in a mineral analysis high or levels of calcium may be observed.  Low levels of calcium may indicate poor absorption, inadequate intake or other nutrient issues such as low vitamin D, while high levels may be suggestive of low vitamin B6 and poor calcium utilisation in the body.

High calcium levels may also contribute to underactive thyroid issues with symptoms such as weight gain, fatigue, low blood pressure and poor mood. Early detection of calcium issues is vital for the prevention of bone issues such as osteopenia, fractures, bone spurs, kidney stones and thyroid issues.

Mineral testing for athletes provides an analysis of how the body is utilizing 13 key nutrients obtained from the athlete’s diet. Longer-term patterns in nutrient deficiencies or excesses may indicate poor activation and non-beneficial storage of nutrients.

To demonstrate this point, let’s take a look at calcium. Calcium will be maintained within a very narrow range in blood serum due to its life supporting roles in managing heart rate, nerves, and muscle function. However, in a mineral analysis high or levels of calcium may be observed.  Low levels of calcium in mineral testing for athletes, may indicate poor absorption, inadequate intake or other nutrient issues such as low vitamin D. High levels in mineral testing for athletes, may be suggestive of low vitamin B6 and poor calcium utilisation in the body.

High calcium levels may also contribute to underactive thyroid issues with symptoms such as weight gain, fatigue, low blood pressure and poor mood. Early detection of calcium issues is vital for the prevention of bone issues such as osteopenia, fractures, bone spurs, kidney stones and thyroid issues.

Significance of mineral testing for athletes

A clinical understanding of how an individual metabolises and utilises nutrients can be obtained through various mineral ratios included in a mineral test.  Just some of the ratios contained in the mineral analysis report are outlined below:

Immunity: Low zinc in relation to high copper levels may indicate a susceptibility to viral infections such as colds, cold sore outbreaks or poor wound healing. Zinc is critical to immune cell function and digestion and hydrochloric acid. Reduced digestive function and symptoms such as bloating, diarrhoea, malabsorption and low nutrient levels may also be observed in patients with low zinc.

Iron deficiency and anaemia: As discussed previously in relation to immunity, ceruloplasmin is a protein carrier shared by zinc, copper and iron. If zinc, copper or iron are too high, they may inhibit the absorption of the other minerals. For example -high levels of copper may be observed in women taking the oral contraceptive pill or through drinking water carried in copper pipes.  High copper levels may contribute to iron deficiency anaemia and present as shortness of breath, lethargy, dizziness and exercise fatigue.

Poor liver detoxification: Molybdenum is a key nutrient required for liver detoxification and is frequently low on test results due to reduced intake of foods rich in molybdenum such as legumes. When molybdenum is low in relation to sulfur an individual may experience sluggishness, fatigue, skin issues, and poor recovery related to reduced sulfation detoxification pathways in the liver.

Blood sugar control issues: Manganese and chromium are key nutrients required for blood sugar control. When manganese is low in relation to chromium an individual may experience energy dips, especially after meals, sugar cravings and dizziness or sweating related to poor blood sugar control and fluctuating insulin levels.

Hormone issues: Minerals play a key role in hormone modulation. When iron is low in relation to copper, individuals may complain of fatigue, poor recovery, weakness, loss of libido, irregular periods and hot flushes due to a pattern of low progesterone or testosterone.

Adrenal gland insufficiency: During times of stress, the adrenal gland utilises larger amounts of sodium and magnesium. When sodium levels are low in comparison to magnesium the adrenal gland may be underperforming as it is highly sodium dependent to produce key hormones such as cortisol.

General muscle tightness: Calcium and magnesium are required for bone health and muscle and nerve function. Stiff muscles, bladder issues and immobile joints may present when there is an issue between the ratio of calcium and magnesium in the body.

HEAVY METAL BURDEN
This form of testing may also identify heavy metal burden on the body. Despite a clean lifestyle, individuals can present with unfavourable levels of mercury, arsenic, lead, tin or aluminium largely due to living in a modern environment where exposure to heavy metals occurs on a regular basis.

Contrary to popular belief, heavy metal accumulation does not necessarily occur from occupational exposure. Frequent exposure arises from pesticides; additives and the tinning of foods; dental fillings; drinking water; products and materials used in homes and offices; personal care products and cosmetics.

Heavy metals are neurotoxins and may over time contribute to a plethora of health issues such as thyroid, reproductive and mental health issues, and cancers. Heavy metals displace other key minerals such as zinc, selenium and iron. The presence of these metals may also be indicative of other functional issues such as reduced liver detoxification pathways.

Practicalities of mineral testing for athletes

Mineral testing looks at long-term trends (over 2-3 months) and can be very useful when symptoms or health issues are ongoing and underlying contributing factors are yet to be identified.  Athletes also find mineral balance results useful before they launch a new training campaign as a measure of nutritional status and as a preventative measure against deficiencies that may inhibit performance.

Mineral testing does not require a blood draw and can be conducted in the privacy of your own home.  Test results generally take 2 weeks and are reviewed during an extended consultation.

For further information or to order a test kit email contact us or book in for your initial consultation.

accurate pathology tests

In this article, we discuss how to obtain accurate pathology tests. Whilst this article is not meant to serve as a diagnostic tool, it may be helpful to better understand what basic pathology tests are useful and how to prepare yourself so you get the most accurate results.

Pathology test results should always be considered in conjunction with symptoms, a thorough physical examination, and discussed during an appointment so that the context and relevance of your results can be determined. One abnormality in pathology tests does not tell much of your health picture, however, patterns of pathology tests can provide a holistic picture of your overall health, your absorption, and digestion of key nutrients and provide warning signs that require further investigation.

WHAT PATHOLOGY TESTS ARE MOST USEFUL?

Your GP or naturopath can arrange pathology tests for you. Exactly which pathology tests you require, will need to be determined by your healthcare practitioner. As a good starting point, I suggest the following tests for my patients:

*Full blood count and hematology- provides a general picture of your immune system, red blood cells and overall health

*Liver function tests (LFTs)- provide some clues as to how your liver is working and if your liver is under stress.

*Electrolytes– including potassium, sodium, and other key electrolytes required for sports performance and optimal health

*Fasting blood glucose- is a general marker that indicates how well your body is modulating your blood sugar. Issues with blood sugar stabilisation may cause symptoms such as sugar cravings, frequent urination, fatigue, and energy drops after meals.

*C- reactive protein (CRP) is an inflammatory marker that is useful when interpreted in conjunction with iron studies. Iron storage may be impacted by states of high inflammation.

*Iron studies- provides information on your iron storage (ferritin), the protein carriers for iron (transferrin), and how effectively your body is saturating these carriers and transporting iron around your body (transferrin saturation).

*Thyroid hormones- TSH, T3 and T4 provide information on how your thyroid is functioning and can be an early warning sign of autoimmunity and nutrient deficiencies such as iodine, selenium, tyrosine and zinc

*Vitamin B12 ( active and inactive) is also suggested for plant-based patients or athletes who infrequently consume red meat.

*If you are prone to mental health issues (especially seasonal sadness/ low mood), autoimmunity, frequent colds, bone health issues, or hormonal imbalances vitamin D, copper and serum zinc may also be useful markers.

Tests may be repeated every few months to ensure a patient is responding to treatment and improving nutrient absorption through targeted nutrition approaches.

How to get the most accurate pathology tests

To get the most out of your pathology tests, it is recommended your prepare appropriately.

DO

  •  fast for 12-16 hours (have dinner and then postpone breakfast until after your blood draw).

AVOID

  • strenuous exercise for a minimum of 24 hours. Ideally, at least 48 hours if possible.  This includes running, cycling, or strength training. Most patients find it easiest to do a blood test the morning after a rest day.
  • obtaining the blood draw when feeling unwell such as with a cold or flu when checking iron studies as infection may influence your test results
  • alcohol or supplements for 24-48 hours prior to your blood tests

We use a number of pathology collection centres across Australia including Clinical Laboratories, Dorevitch, and Nutripath to obtain accurate pathology results. We also refer to functional testing such as mineral testing completed through Interclinical Laboratories.

 

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

iron for vegetarian

Vegetarian and vegan athletes are at greater risk of anaemia due to reduced intake of animal products containing iron and B12.

It is important to remember there are two different forms of dietary iron.

Heme iron is found in animal meats such as liver, lamb, beef and kangaroo.
Non-heme iron is derived from plant sources such as legumes, dried fruits, nuts and leafy green vegetables, tofu and eggs.

Heme- iron is the more readily absorbed form of iron. Eggs and many plant foods also contain non-heme iron, but have reduced bio-availability compared to meat sources. Vegetarians and non-meat eaters need to be mindful to consume adequate amounts of non-heme iron along with foods that enhance iron absorption

The key to maintaining iron adequacy is to consume non- heme rich foods at every meal and load your diet with healthy wholefood plant sources that are packed in all the co-factors such as vitamin C, bioflavonoids and folate. These co-factors help extract and absorb iron at every opportunity throughout the day. Avoidance of foods that contain nutrients which inhibit iron absorption is even more important for vegetarians and vegans as they have less room to move.

Iron absorption will be decreased by up to 60% if you have tannin-containing drinks or foods such as teas, coffee, red wine, peppermint tea and chocolate within two hours of an iron-rich meal.

This doesn’t mean you have to go completely without your treats, it just means you are best to have them in moderate amounts and avoid having them at the same time.

Mother nature also provides a reminder of blood-building foods in red-coloured plant foods. Beetroot, rhubarb, berries, dried figs and plums all contain iron.

Vegetarian Meal Plan

Breakfast: scrambled eggs (2), ½ cup spinach (cooked) plus 1 grilled tomato and 2 slices wholemeal toast with butter.  Include a large glass of freshly squeezed orange, parsley and kiwi juice.

Morning tea: 50g dried apricots plus 50g activated almonds

Lunch: cooked lentils (1 cup) with 1/2 cup quinoa, ½ cup fresh tomato added at last minute, 1 cup salad greens including capsicum, grated carrot, shredded cabbage and 1 tablespoon of tahini dressing

Afternoon tea: 1 bowl of Beet Berry smoothie bowl with coconut and cereal topping

Dinner: 1 cup grilled tempeh (fermented tofu) with 1/2 cup steamed broccoli, 1/2 cup baked pumpkin and 1 beetroot with lemon, parsley and olive oil dressing

 

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

With the popularity of plant-based diets and increased numbers of women participating in sport, it isn’t surprising that anaemia in athletes is on the rise.

Iron is also needed for protein metabolism, collagen and antioxidant synthesis, as a co-factor for key enzymes involved in energy production, muscles, DNA and hormone synthesis; and immune function. Iron plays a key role in forming hemoglobin in red blood cells. Haemoglobin is necessary for the transportation of oxygen around the body and is critical to athletic performance.

If left untreated, iron deficiency and anaemia may contribute to decreased endurance; reduced training capacity and recovery lead to more frequent colds and other infections.

Why are athletes have an increased risk of anaemia

*Greater iron utilisation and requirements of iron

*Inflammation which reduces the body’s ability to store iron,

*Gastrointestinal tract stress limiting the absorption of iron through nutrition and blood loss,

*Loss of iron through sweat 

*Haemolytic breakdown of red blood cells through footstrike

*Blood loss may also occur through urine 

*Insufficient intake of iron-rich foods  and more plant-based foods

*Heavy periods in female athletes

In the general population, anaemia most commonly results from nutrient deficiencies due to low intake of iron-rich foods and blood loss such as with heavy periods, haemorrhoids or gastric ulcers. Surgery and eating disorders and exposure to viruses (e.g. Malaria), toxins (e.g. lead) or renal disease, and some drugs, reduce iron absorption. Low stomach acid, diarrhoea, Coeliac’s and Crohn’s disease and gastric bypass also decrease iron absorption. Increased requirements such as in pregnancy can also lead to deficiencies.

Iron is found in plants and animal meats
It is important to remember there are two different forms of dietary iron.

Heme iron is found in animal meats such as liver, lamb, beef and kangaroo.
Non-heme iron is derived from plant sources such as legumes, dried fruits, nuts and leafy green vegetables, tofu and eggs.

As the body must change the structure of the non-heme iron before it can be absorbed, heme iron from animal products is more bioavailable for the body. This doesn’t mean a vegetarian will always be low in iron, it just means they need to be smart about where they get their iron, and ensuring they include high amounts of other nutrients that aid absorption of iron.

HEME IRON SOURCES
Food Average serving Iron (mg)
Kangaroo 150g cooked (palm size) 4.8
Beef 150g cooked (palm size) 4.6
Lamb 150g cooked (palm size) 3.7
Oysters 84 g (8) 3.1
Chicken liver pate 40g (2 tablespoons) 2.5
Chicken 150g cooked (1 cup) 2.4
Salmon 170g (3/4 cup) 2.0

[/mk_table][mk_table]

NON-HEME IRON SOURCES
Food Average serving Iron (mg)
Lentils 1 cup cooked 6.6
Black strap molasses 2 tablespoons 6.4
Quinoa 1 cup cooked 5.3
Spinach 1 cup cooked 4.4
Kidney beans 1/2 cup 2.6
Tahini 2 tablespoons 2.6
Eggs 2 cooked 2.2

TOP 10 TIPS – To increase your iron absorption

*Consume foods high in vitamin C such as capsicum, berries, citrus and guava and malic acid rich foods such as watermelon, berries, kiwi, apricots and mango in the same meal to enhance non-heme iron absorption. Don’t forget natures wonders such as parsley and beetroot that are also great blood builders.

*Eat fresh wholefoods. Consume 2 serves of fruits mentioned above per day plus 5-7 serves of vegetables and 2-3 serves of wholegrains per day. These foods provide nutrients that aid iron metabolism such as copper, vitamin A, vitamin B2, B12, folic acid, molybdenum, selenium and amino acids.

*Eat red meat, fish or chicken with vegetables. Consuming meat at the same time as plant-based sources of iron can enhance the non-heme absorption from plants by 85%. Consume a palm-size portion of iron-rich foods 4-5 times per week to maintain iron levels.

*Cook your iron-rich vegetables. Cooking plant-based iron foods such as spinach may improve iron bioavailability.

*Improve your digestion and boost your hydrochloric acid levels by drinking freshly squeezed lemon juice or apple cider vinegar in water 15 minutes before meals so you break down foods efficiently.

*Use pots and pans made from iron while cooking. The iron can go into the food during cooking.

*Separate iron from calcium-rich foods. Consume foods containing substances that inhibit iron at least 2 hours away from an iron-rich meal or iron supplements. Calcium, oxalic acid, tannins and phytate-containing foods may all reduce the absorption of iron when consumed together.

    • Calcium-rich foods such as cow’s milk, cheese, yogurt and calcium supplements.
    • Oxalic acid s can be found in chocolate, tea, uncooked spinach and chard.
    • Tannins can be found in coffee, cocao, red wine, peppermint tea, and cranberries.

*Soak, sprout, ferment and cook (where appropriate) foods containing phytic acid found in legumes (beans, lentils, chickpeas) and other wholegrains, nuts and seeds to limit the effect phytates have on reducing iron absorption.

*Be aware of drugs such as antacids like Mylanta, antibiotics, and aspirin which decrease iron absorption. Separate iron supplements and iron-rich foods from medications.

*Avoid self-prescribing supplements as too much iron can be toxic! See your naturopath for testing, advice on your iron status, and the quantity and best form of iron to take.

 

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au