Nutrition

Photo of Kate Smyth naturopath, performing an examination on a patient.

Sports naturopathy, also known as sports focussed naturopathic medicine, uses natural healing approaches and offers many potential benefits for athletes.

Naturopathic practitioners (Naturopaths) aim to maintain optimal health through a balanced and yet comprehensive approach. Naturopathy complements other conventional medical and allied health practices.

Potential benefits of sports naturopathy for athletes include:

Holistic Approach: Sports naturopathy takes a holistic approach to health, considering the physical, mental, and emotional aspects of an individual. A naturopath is trained in nutritional medicine, biochemistry, herbal medicine, pharmacology and pathology. A scientific medicine and a complex holistic approach can be particularly beneficial for athletes as it addresses the whole person, rather than just isolated symptoms.

Individualised Treatment: Naturopaths create personalised treatment plans for athletes based on their specific nutritional needs, sporting goals, and health conditions. This facilitates targeted and effective interventions.

Nutrition and Dietary Guidance: Proper nutrition can enhance energy levels, prevent illness and nutrient deficiency, and overall sports performance. A food first approach focusses on using food as medicine. A naturopath will also provide balanced and nutritious guidelines to meet an athlete’s nutritional requirements.

Natural Solutions:  Heavily researched and synergistic natural solutions such as vitamins, minerals, and herbal medicines are used to support athlete’s health and performance. These supplements are chosen based on scientific evidence and matched to the individual’s needs. We draw on the vast number of published research papers on global medical databases and carefully assess the integrity quality and validity of papers and underlying research projects.

Stress Management: Athletes can experience high levels of physical and emotional stress as part of living a very full life.. Adaptogens are a category of natural medicines that modify stress hormones such as cortisol and support calming neurotransmitters like GABA. Adapatogens better equip the athlete to consistently perform well under pressure by adjusting the nervous system’s response to stress.

Injury Prevention and Repair: Naturopathic treatments promote healing of bone fractures, muscle, tendon and ligament damage and underlying inflammation. Naturopathic anti-inflammatory medications and nutrition have been shown to have similar effects as non-steroid anti-inflammatory medications with limited side effects.

Detoxification: Where appropriate gentle detoxification approaches can help athletes maintain optimal organ function and overall health.

Pain Management: Sports naturopathy offers various natural solutions that ease pain as part of injury management, neurological issues, painful periods and headaches. These approaches may help athletes manage pain without relying solely on pharmaceutical medications.

Enhance Recovery: Poor recovery can be a sign of underlying health imbalances. Minerals and herbal medicines promote muscle relaxation and reduce inflammation. Sports naturopathy complements other recovery techniques such as water running, anti gravity, Normatec recovery systems, cold water and sauna therapy. A naturopath may also refer to massage, kinesiology, bowen, osteopathy and myopathy.

Optimise Immune Function: Immune support is crucial for athletes who are prone to overexertion and increased susceptibility to illness. So often athletes get run down and sick right before competition and in the weeks following. A preventative approach including key immune boosting nutrients, wholefood medicines and herbs can be beneficial and well tolerated during times of high stress.

Digestive Health: Proper digestion and absorption of nutrients is key foundation in sports naturopathy. Naturopaths work to resolve digestive symptoms such as bloating, diarrhoea and urgency are common issues.

Long-Term Wellness:. By addressing the root causes of health issues and providing preventive strategies, athletes can aim for sustained peak performance over time and minimise health issues.

It’s important to remember that while sports naturopathy can offer these potential benefits, as with all medical interventions, individual responses may vary. Athletes should consult with a qualified sports focussed naturopath to create a comprehensive and well-rounded approach to their health and performance.

Photo of a female athlete kneeling down on the ground as she is exhausted.

Training fasted involves exercising without food and/or energy drinks for a period of time. The most common fast lasts for 8/12 hours or extended to 16 hours as an overnight fast. During this period, we tap into fat stores in the form of ketone bodies and stored glycogen.

Runners often train fasted unconsciously as a morning run or gym session before breakfast.

This practice has gained popularity due to its potential effects on fat loss, and overall performance. However, it also comes with its share of pros and cons and is not for everyone. Here’s a list of some of the potential pros and cons:

Pros of Training Fasted:

Weight management: Training fasted may increase the body’s reliance on using stored fat for energy. Over time this aids fat loss and contributes to the maintenance of lean muscle mass, beneficial body composition and weight management.

Weight management: Reduced body fat, contributes to the maintenance of lean muscle mass and beneficial body composition. This can be beneficial for athletes competing in weight categories or sports dependant on body composition such as body sculpting.

Insulin Sensitivity: It can improve insulin sensitivity. When you do eat after exercise, the body absorbs nutrients more efficiently, which is beneficial for overall health and weight management. This assists with blood sugar control, energy levels and management of insulin resistance and diabetes.

Hormonal Responses: Training fasted can lead to increases in human growth hormone (HGH) key to muscle growth. Muscle growth is important to athletes in strength and body sculpting related sports.

Metabolic Adaptation: Proponents will argue that training fasted makes them more efficient at using fat stores for energy. In recent times the belief has gained traction in the endurance running community (especially ultra running).

Cons of Training Fasted:

Performance Impairment: Fasting and then training can lead to decreased performance, especially for high-intensity workouts. Without readily available carbohydrates athletes experience lower energy levels during and post exercise. Recovery, strength, and endurance are also impaired.

A recent review of 46 studies concluded eating before exercise prolongs aerobic performance. The debate becomes clouded in practice as endurance athletes can feel ok during low-to-moderate intensity training when training fasted. A runner can feel good on an easy 6km recovery run but rubbish doing 1km reps.

Muscle Breakdown: Training fasted could potentially lead to increased muscle breakdown due to the lack of readily available energy sources. This is detrimental to muscle gain and repair.

Hydration and Electrolyte Imbalance: Fasting can lead to dehydration and electrolyte imbalances, which can negatively impact workout performance and recovery.

Additional adrenal gland stress: It can increase adrenaline levels and cortisol levels. This is not a great scenario for those athletes with already high levels of stress.

Lower hormones: reduces male sex hormones (androgens) and negatively impacts libido and metabolic health. This is non-beneficial for men but beneficial for women with polycystic ovarian syndrome (PCOS). Training fasted does not appear to have any effect on estrogen or prolactin levels in women.

Training fasted may also reduce thyroid hormones -thyroid stimulating hormone (TSH) and T3- active thyroid hormones. This may contribute further to thyroid hormone imbalances.

Risk of Overeating Post-Workout: Some individuals compensate by consuming larger meals after exercise. Sugar and carbohydrate cravings increase as the day progresses. Poor food choices and excessive sugar intake peaks towards the end of the day. This can then result in disturbed sleep and reduced energy levels the following day.

Lack of Nutrients for Recovery: After exercise, your body needs nutrients for muscle repair, glycogen replenishment, and overall recovery. Fasted training can limit the availability of these nutrients at a critical time and delay recovery.

Individual Responses: Fasted training might be suitable for some individuals but not for others. Factors like genetics, training goals, and personal preferences can greatly influence the effectiveness and comfort of training fasted.

Increased Perceived Effort: For some athletes, training on an empty stomach can make training sessions feel harder. This can impact motivation and adherence to the training routine.

In summary, training fasted can have potential benefits such as increased fat loss and improved insulin sensitivity. However, training fasted also comes with potential downsides like impaired performance and muscle loss. Athletes are also at risk of reduce hormone levels, dehydration and nutrient deficiencies with prolonged fasting.

Your training goals, preferences, and how your body responds to fasted training is important to observe. We always recommend seeking professional help from a sports naturopath or nutritionist to ensure training fasted aligns with your specific circumstances.

Sources:

Aird, T. P., Davies, R. W., & Carson, B. P. (2018). Effects of fasted vs fed‐state exercise on performance and post‐exercise metabolism: A systematic review and meta‐analysisScandinavian journal of medicine & science in sports28(5), 1476-1493.

Cienfuegos, S., Corapi, S., Gabel, K., Ezpeleta, M., Kalam, F., Lin, S.,  & Varady, K. A. (2022). Effect of intermittent fasting on reproductive hormone levels in females and males: a review of human trials. Nutrients14(11), 2343.

Kim, B. H., Joo, Y., Kim, M. S., Choe, H. K., Tong, Q., & Kwon, O. (2021). Effects of intermittent fasting on the circulating levels and circadian rhythms of hormones. Endocrinology and Metabolism36(4), 745-756.

Hackett, D., & Hagstrom, A. D. (2017). Effect of overnight fasted exercise on weight loss and body composition: A systematic review and meta-analysisJournal of Functional Morphology and Kinesiology2(4), 43.

Hansen, D., De Strijcker, D., & Calders, P. (2017). Impact of endurance exercise training in the fasted state on muscle biochemistry and metabolism in healthy subjects: can these effects be of particular clinical benefit to type 2 diabetes mellitus and insulin-resistant patients?. Sports Medicine47, 415-428.

Vieira, A. F., Costa, R. R., Macedo, R. C. O., Coconcelli, L., & Kruel, L. F. M. (2016). Effects of aerobic exercise performed in fasted v. fed state on fat and carbohydrate metabolism in adults: a systematic review and meta-analysis. British Journal of Nutrition, 116(7), 1153-1164.

Zouhal, H., Saeidi, A., Salhi, A., Li, H., Essop, M. F., Laher, I.,   & Ben Abderrahman, A. (2020). Exercise training and fasting: current insightsOpen access Journal of sports medicine, 1-28.

Want to know more? Contact the Athlete Sanctuary and learn how we can help you to increase health, wellbeing and performance. 

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a Master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes.

Photo of a female athlete wearing a hoody on a dark gloomy day

Seasonal Affective Disorder (SAD), also known as seasonal depression or seasonal mood disorder, can have many impacts to your way of life, including your athletic performance. While SAD’s prevalence in Australia may differ from other regions, it is still important to explore the experiences of female athletes living with SADs. In this blog post, we will delve into the symptoms and unique challenges faced by female athletes in relation to SAD, and strategies to navigate through it.

SEASONAL AFFECTIVE DISORDER

It’s vital for female athletes to recognise the intersection between their mental health and athletic performance, and acknowledge that working on mental health can positively impact their overall performance and condition.

SAD is suggested to be linked to the circadian rhythms (‘body clock’) adjustments at certain times of the year and in response to variations in exposure to sunlight. This is thought to impact the hormones melatonin and serotonin, which affect sleep and mood.

Those most at risk are younger females, those with a family history of depression, bipolar disorder, or SAD. The risk increases the further away from the equator. Vitamin D deficiency is also linked to SAD and people with SAD may produce less Vitamin D. As Vitamin D plays a role in serotonin activity, Vitamin D deficiency and insufficiency have been associated with depressive symptoms.

SAD frequently co-occurs with other disorders including attention-deficit hyperactivity disorder (ADHD), addiction, and eating disorders.

RECOGNISING SEASONAL AFFECTIVE DISORDER

Awareness of Seasonal Patterns
Athletes experiencing SAD may notice seasonal patterns to their moods.

Winter
Common observations over winter include:

  • Decline in mood, sadness and depression
  • Fatigue without explanation
  • Reduced motivation
  • Hopelessness
  • Social withdrawal
  • Overeating and carbohydrate cravings
  • Excessive sleeping

Summer
In summer SAD may look more like sleep issues, not feeling hungry, losing weight and feeling agitated and anxious.

By recognising these patterns and symptoms, athletes can better anticipate and prepare for the potential impact on training and performance.

ADJUSTING TRAINING SCHEDULES

Athletes and coaches may need to modify training schedules to accommodate SAD symptoms. This could mean adjusting the timing of workouts to coincide with optimal sunlight exposure in the middle of the day, incorporating more indoor training during the darker months, or allowing for flexibility in training intensity to accommodate fluctuations in mood and energy levels.

USING SUPPORT NETWORKS AND RESOURCES

Communication
Openly communicate with coaches, supporters, friends and family about your experiences with SAD. By sharing your challenges and seeking understanding, you can foster a supportive environment that promotes positive mental health and helps alleviate the burden of SAD symptoms.

Seek Out a Mental Health Professional
Support from a mental health professional who specialises in sports psychology can be incredibly valuable. These professionals can provide tailored strategies to manage SAD symptoms, including cognitive-behavioural techniques, mindfulness practices and stress management tools.

In some cases your doctor may recommend light therapy.

SELF-CARE AND WELLBEING

Sunlight Exposure
Spend time outdoors during daylight hours, as sunlight exposure has a positive impact on vitamin D levels, sleep, mood and energy levels. Including outdoor activities, such as training sessions, walks and other outdoor hobbies, can help combat the effects of SAD.

Rest and Recovery
Prioritise sufficient sleep and establish consistent sleep routines to support your mental health and physical wellbeing.

Stress Reduction
Implementing stress reduction techniques, such as meditation, deep breathing exercises, or taking time with hobbies, people etc that bring joy, can help to alleviate SAD symptoms and promote overall mental wellbeing.

Vitamin D
We recommend athletes who suffer from SAD check their vitamin D levels every 6 months. Maintaining regular sunlight exposure and intake of vitamin D rich foods is essential to the prevention of deficiency. In many cases vitamin D supplementation is required.

Managing Seasonal Affective Disorder requires a comprehensive approach that integrates mental health and performance considerations. By recognising the unique challenges you face and implementing strategies such as adjusting training schedules, tapping into support networks and prioritising self-care, you can affectively navigate SAD while maintaining fitness and performance.

 

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit our website.

 

References
1. Armstrong, S. L., & McVeigh, D. (2019). A systematic review of athletes’ experiences with self-talk. Frontiers in Psychology, 10, 1518.
2. Fenton, G., McPherson, A., & Kinnafick, F. (2019). Qualitative inquiry into the lived experiences and coping strategies of female athletes with eating disorders. Psychology of Sport and Exercise, 42, 100-108.
3. Gulliver, A., Griffiths, K. M., & Christensen, H. (2012). Perceived barriers and facilitators to mental health help-seeking in young people: A systematic review. BMC Psychiatry, 12.
4. Pargman, D., & Wiese-Bjornstal, D. M. (2003). Examining links between emotional states and physical activity among individuals with high physical activity levels. Journal of Applied Sport Psychology, 15(4), 300-317.
5. Melrose S. Seasonal Affective Disorder(2015): An Overview of Assessment and Treatment Approaches. Depress Res Treat. doi: 10.1155/2015/178564.
6. Murray, G. (2004). How common is seasonal affective disorder in temperate Australia? A comparison of BDI and SPAQ estimates. Journal of affective disorders, 81(1), 23-28.
7. https://www.mayoclinic.org/diseases-conditions/seasonal-affective-disorder/symptoms-causes/syc-20364651
8. https://www.psycom.net/depression.central.seasonal.html
9. https://wayahead.org.au/get-the-facts/seasonal-affective-disorder/
10. https://www.healthdirect.gov.au/seasonal-affective-disorder

Photo of a bowl of pumpkin and ginger soup with a spoon.

We all know that winter weather calls for delicious, heart warming soups. This delicious pumpkin soup recipe has the added bonus of ginger – an ingredient that aids digestion and is packed with antioxidants that help prevent arthritis, inflammation and various types of infection. There are so many health benefits of ginger!

Ingredients

1kg pumpkin, peeled, seeds removed and cut into 4cm pieces

75g ginger, roughly chopped

2 garlic cloves

2 tbs extra virgin olive oil

1L (4 cups) vegetable or chicken stock

2 tbs finely chopped dill

1/3 cup (50g) toasted hazelnuts, chopped

Method

Preheat your oven to 180 degC.

Place your pumpkin, ginger and garlic on a large baking tray and drizzle with oil. Season, then toss to coat. Roast for 30 minutes or until the pumpkin is soft (don’t let the garlic burn).

Puree mixture in a blender or food processor with 2 cups (500ml) of stock, then season. If there are lumps then strain through a fine sieve. Place the soup in a large saucepan with remaining 2 cups (500ml) of stock and warm over a medium-low heat.

Divide the soup between 4 bowls and serve with dill and toasted hazelnuts and what ever other toppings you love on your soup – if you wish a dollop of marscapone.

Enjoy x

Photo of a female lying down on the ground with her hands to her head in discomfort.

Premenstrual Dysphoric Disorder (PMDD) is a health concern best described as a form of severe premenstrual syndrome (PMS). PMDD affects 3-8% of women worldwide but is not well understood or researched.

What are the symptoms?

PMDD symptoms include anger, irritability, depressed mood, anxiety, lack of pleasure, a sense of overwhelm, difficulty concentrating, fatigue, changes in appetite or food cravings, sleep changes, and physical symptoms such as breast tenderness, bloating or headaches.

These symptoms emerge in the luteal phase of the menstrual cycle, one to two weeks before periods commence, and typically subside within a few days of bleeding.

Over 64% of women experience some kind of mood changes a few days before the onset of menstruation. For women with PMDD these changes are more extreme. Despite having normal hormonal fluctuations during the menstrual cycle, women with PMDD experience an abnormal mood response to these fluctuations. Rage, anger, irritability, intolerance to others, anxiety and depression are commonly reported in women with PMDD. Our patients with PMDD sometimes say extreme statements along the lines of ” I get so mad I feel like I want to kill my husband before my period.”

It is suggested these more extreme changes in mood may be attributable to the effect estrogen and progesterone have on the serotonin, GABA and dopamine systems. These can also alter the renin-angiotensin-aldosterone system, which could explain some of the bloating and swelling that occur during the luteal phase.

Conventional intervention typically involves the contraceptive pill, anxiety medications and anti-depressant medications. For some women this relieves problematic symptoms but may also contribute to other side effects which become more of an issue than the PMDD itself. For those women, considering complementary solutions may be a good option. In traditional medicine practice, herbal medicines have been used to manage PMDD. Some of these natural medications support GABA levels, reduce extreme emotions, reduce depression, minimise physical symptoms and promote relaxation.

Other options often included in a herbal prescription such as withania , ginseng and rhodiola are considered serotonergic – i.e. they support level of serotonin in the brain. Nutrients such as vitamin E, vitamin D, zinc, vitamin B6, 5-HTP, calcium or inositol may be prescribed to help support healthy mood, reduce pain and support hormonal balance.

In naturopathic medicine we consider the individual’s unique presentation and symptomatic picture, rather than the diagnosis. Therefore, our treatment plans are also always tailored to the individual and consider their health history and current lifestyle demands. For some women anger is their key concern, while for others their depression is debilitating.

It helps to be realistic about what changes you can expect and appropriate timeframes. To get the best results we recommend an in-depth assessment and consultation for women with PMDD along with regular reviews to allow for modifications and adjustments of formulas and dosages.

Always seek medical care if you think you may have PMDD.

Want to know more? Contact the Athlete Sanctuary and learn how we can help you.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a Master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.athletesanctuary.com.au

 

References
Hantsoo, L., & Payne, J. L. (2023). Towards understanding the biology of premenstrual dysphoric disorder: From genes to GABA. Neuroscience and biobehavioral reviews, 149, 105168. doi.org/10.1016/j.neubiorev.2023.105168

Hofmeister, S., & Bodden, S. (2016). Premenstrual Syndrome and Premenstrual Dysphoric Disorder. American family physician, 94(3), 236–240.

Kashanian M, Mazinani R, Jalalmanesh S. Pyridoxine (vitamin B6) therapy for premenstrual syndrome. (2007) Int J Gynaecol Obstet;96(1):43-44.

Tartagni, M., Cicinelli, M. V., Tartagni, M. V., Alrasheed, H., Matteo, M., Baldini, D., De Salvia, M., Loverro, G., & Montagnani, M. (2016). Vitamin D Supplementation for Premenstrual Syndrome-Related Mood Disorders in Adolescents with Severe Hypovitaminosis D. Journal of pediatric and adolescent gynecology, 29(4), 357–361. doi.org/10.1016/j.jpag.2015.12.006

Cerqueira, R. O., Frey, B. N., Leclerc, E., & Brietzke, E. (2017). Vitex agnus castus for premenstrual syndrome and premenstrual dysphoric disorder: a systematic review. Archives of women’s mental health, 20(6), 713–719. doi.org/10.1007/s00737-017-0791-0

Photo of a glass dish of apple and rhubarb crumble.

GLUTEN-FREE APPLE AND RHUBARB CRUMBLE

Rhubarb is a great source of vitamin C for immunity, magnesium, potassium and calcium. Rhubarb is rich in vitamin K1, important for bone health. A half cup of cooked rhubarb provides more than one-third of the recommended dietary intake of vitamin K1, along with two grams of fiber (great for overall gut health, constipation and lowering cholesterol).

Then there’s the apple – incredibly nutritious and offering multiple health benefits including fibre and a rich load of antioxidants. So what could be better than combining the two into a delicious gluten-free crumble?

This delicious, warming apple and rhubarb crumble is the perfect, healthy winter warming dessert and even better served with some creamy natural yoghurt or your favourite icecream!

Ingredients
• 4 apples peeled and cored
• 3 cups fresh rhubarb
Topping
• 2 tbs soft butter
• 4 tbs coconut sugar
• 4 tbs almond meal
• 4 tbs rice flour
• 1/2 tsp cinnamon
• 2 tbs pumpkin seeds
• 4 tbs shredded coconut
• 2 tbs sliced almonds
• Juice of 1/2 fresh lemon

Method
• Preheat oven to 160c
• Place diced apple and rhubarb in a large pot
• Squeeze lemon juice over these two ingredients
• Cook over low heat until soft.
• Place cooked fruit mixture in an oven proof dish. A glass Pyrex dish is perfect.
Topping
• Place all dry ingredients in a bowl. Mix through. Rub the soft butter through the mixture to form a slightly lumpy crumble using clean fingers.
• Spoon crumble topping over cooked apple and rhubarb and place in fan forced oven for 20 minutes or until brown.

Most of all…..enjoy! x

Photo of jars of watermelon and orange in glass jars ogf water with straws.

Most athletes consider the balance of electrolytes when thinking about hydration and recovery, especially over endurance events.  But are salt tablets and electrolytes really necessary?

Before we answer this question, let’s recap on electrolytes and the role they perform in the body.

Sodium is the key electrolyte responsible for controlling extracellular fluid balance while potassium controls the fluid within the cells. Potassium also helps with muscle contraction and supports blood pressure. Electrolytes such as potassium can also impact iron absorption. Potassium (along with other nutrients such as zinc and B vitamins) is essential for hydrochloric acid (HCL) production in your stomach. Without adequate HCL a condition known as achlorhydria can develop where your ability to absorb dietary iron and the successful coordination of iron uptake, export, and iron storage as ferritin is reduced.  This can lead to iron deficiency and anaemia as explained in this article.

Magnesium is well known for its role in nerve function, heartbeat regulation, energy metabolism and blood sugar stabilisation. Your muscles, brain and heart rely heavily on magnesium to do their job. As an electrolyte, magnesium sits both inside and outside cells and binds to water and interacts with other electrolytes.   Calcium is well known for its role in bone health, heart and nerve function and less recognised as an electrolyte. Calcium sits within both intracellular and extracellular spaces. Other electrolytes include phosphates, chloride and bicarbonates.

Sodium and chloride are the two electrolytes lost in large quantities through sweat. The losses of these electrolytes are regulated in response to the balance of sodium consumed in the diet and recent sweat and urine losses.

So is the ingestion of electrolytes or salt tablets really necessary to enhance performance? Well yes and no. Confusing hey!

Why you should consider electrolytes.

Research suggests sodium added to drinks before exercise may improve the amount of that fluid retained, rather than lost through urination and potentially reduce the risk of dehydration. Sodium can also improve the flavour of drinks and encourage consumption when consumed during exercise. This could be handy in warmer conditions and when exercising for two or more hours. Sodium during exercise can also reduce the potential risk of developing hyponatraemia. It is suggested sodium can assist with fluid and carbohydrate absorption from the gut.  If you are a heavy sweater with above average sodium loses (>1g/L) identified through sweat testing, then you may benefit from sodium ingestion during exercise if you are exercising for several hours.

The good news is that most sports drinks and gels contain sodium so it is unlikely the majority of athletes will need to take on additional electrolytes in the form of tablets. Ultra runners and ironman participants may be an exception to this rule.

Keep in mind the body has large stores of sodium that are released into the bloodstream as needed so it is unlikely you will ever run out of sodium unless severely dehydrated. The key reason why sodium is included in sports products is to balance out fluid intake and losses and maintain an appropriate osmolality, while improving the taste and increasing the palatability and consumption of the product, rather than preventing an actual sodium deficit.

And what about cramping?

Cramping is caused by multiple factors that can lead to changes in the nerves that control muscle contraction and muscle fatigue. Therefore, it is a little simplistic to suggest a single nutrient such as sodium or magnesium will prevent cramping.  Further scientific research is required to give us clear guidance around cramp prevention. Many athletes do respond well to magnesium and a suitable hydration protocol.

Don’t forget you can also obtain electrolytes through wholefoods nutrition.

  • Sodium is easily found in most processed foods such as crackers, sardines, smoked foods, pickled foods, roasted seeds and nuts, cheeses, table salt and sauces.
  • Magnesium is found in pumpkin seeds, chia seeds, almonds, spinach, cashews, black beans, peanuts, oats, brown rice, and yogurt.
  • Potassium-rich foods include potatoes, sweet potato, dried apricots, and raisins, beans lentils, spinach, broccoli, avocado and bananas.

So before you reach for more artificial sports products consider if this is really necessary and if there are alternative ways you can provide your body with the electrolytes it requires.

Need specific guidance?  We would be delighted to help.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a Master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

 

References

Miller KC. et al. An Evidence-Based Review of the Pathophysiology, Treatment, and Prevention of Exercise-Associated Muscle Cramps. J Athl Train. 2022; 57(1):5-15.

Lau WY. et al. Water intake after dehydration makes muscles more susceptible to cramp but electrolytes reverse that effect. BMJ Open Sport Exerc Med. 2019; 5(1):e000478.

Maughan RJ. & Shirreffs SM. Muscle Cramping During Exercise: Causes, Solutions, and Questions Remaining. Sports Med.2019; 49(Suppl2):115-124.

Best Protein powder

Kate Smyth- Sports Naturopath and Nutritionist

It can be difficult to know how to choose the best protein powder. Protein plays a vital role in any athlete’s eating plan. Irrespective of your chosen sport be that running, triathlon, swimming, team sports, cycling or lifting weights, athletes expend more energy than the average person. Athletes also need more nutrients to recover from intense training or competition.

Protein provides both structural and functional properties to all working cells in the body, making up approximately one sixth of your body weight. Protein helps strengthen muscle tissue, repair damage and is critical to building muscle mass. Protein and amino acids are also vital for healthy bones, cartilage, tendons, skin and blood as explained in our article on collagen and tendons.

But there are many more benefits to including adequate protein in your diet, especially as an athlete. Optimising protein intake as an athlete is vital and needs can vary significantly from that of a more sedentary person.

Benefits of adequate protein

  1. Stable Blood Sugar – more energy and reduced fatigue
  2. Less Cravings for Sweet and Snack Foods- better weight management and reduced energy fluctuations
  3. Improved recovery after sessions and events
  4. Muscle growth and reduced risk of muscle loss, leading to greater powder to weight ratio
  5. Improved immune system, reduced downtime days and disruptions to training progress
  6. Healthy bone maintenance and reduced risk of osteoporosis
  7. Improved metabolism and fat burning capabilities- enabling of a lean physique
  8. Aids injury repair and improved recovery time
  9. Improved nerve function and muscle contraction
  10. Reduced hunger through reducing ghrelin (the hunger hormone) leading to greater satiety

Good sources of dietary protein

Ideally, sources of protein are coming from whole, fresh foods such as lean meat and poultry, fish, eggs, dairy products such as yoghurt, milk and cheese, seeds and nuts, beans, legumes, tofu and some grains, such as quinoa or buckwheat.

While it is possible for elite athletes to reach their daily protein requirements through diet from unprocessed wholefood sources (and this is highly recommended for the majority of protein intake) athletes in high training loads, with requirements for lean muscle mass or when injured, may find protein powders (20-30 grams) beneficial when ingested straight after training. During this time the muscles are more receptive to uptake of amino acids. However, muscle repair continues for 24 hours and therefore regular protein intake throughout the day is important.

Protein supplements such as whey protein or vegan protein powders are practical, convenient when travelling, or in a smoothie as a mid-morning snack.

Best protein powders

A ‘complete protein’ refers to the building blocks of protein – amino acids. There are 20 amino acids that can form a protein, and 9 that the body cannot produce on its own. These are the essential amino acids and we need to be able to get them through diet, or supplementation. All amino acids are required for protein synthesis, and a lack of one or more amino acids may compromise the athlete’s ability to build muscle.

Leucine is the key amino acid linked to muscle building and recovery. Research suggests ingestion of 2.7 grams of leucine results in a robust stimulation of muscle protein synthesis.   Research suggests powders containing the optimal ratio for the branch chain amino acids leucine, isoleucine, and valine in a 2:1:1 ratio in addition to the full amino acid profile are optimal for sports recovery and performance.

What type of protein powder is best?

There isn’t one type of protein powder that is better than others however some powders may be more suited to athletes depending on food preferences and intolerances, and health goals.  Powders with minimal ingredients, natural flavors, a balanced and complete amino acid profile, and organic are suggested to be the healthiest. Some powders may provide added probiotics beneficial for gut health.

Popular protein powder options include:

Plant-based protein

Plant-based protein powders may include combinations of pea, hemp, soy, pumpkin seed, flax seed fava bean, potato, corn and brown rice protein. Plant based options are dairy, whey, casein and egg free.  Leucine, lysine, and/or methionine are key amino acids for muscle-building capacity which may be reduced in plant-based powders.

Plant-based proteins could provide the same amount of leucine by adjusting the amount of protein ingested. Due to the greater leucine content of corn, 20 g of protein needs to be ingested to provide 2.7 g leucine, while the dietary protein dose of the other plant-based proteins would need to be increased to 33 g (potato), 37 g (brown rice), 38 g (pea), 40 g (soy), and 54 g (hemp).

Plant-based proteins that do meet the requirements for essential amino acids include soy (27%), brown rice (28%), pea (30%), corn (32%), and potato (37%). When plant-based proteins are combined (e.g. rice and pea) the amino acid profile can be enhanced.

Microalgae has received considerable attention in recent years due to their high protein content (similar to meat, egg, soybean, and milk), presence of other beneficial nutrients, and production that requires less water and land than other crops or animal foods. 48 g of microalgae protein is required to provide 2.7 grams of leucine.  Plant-based options are often viewed as sustainable, easily digestible, and potentially cheaper.

Whey

Whey protein powder is dairy-derived and fairly quickly and easily digested and absorbed. When combined with resistance training, whey protein may help increase muscle mass, support growth, and speed so it’s a great choice for athletes. Whey is also high in branched-chain amino acids (BCAAs), which can help speed muscle recovery.

Of the animal-based proteins, whey protein has the highest essential amino acid content of 43%. Whey protein is available in concentrate, isolate, or hydrolysate form, although many supplements contain a combination of the three. Typically 25g of whey protein provides 2.7 g of leucine.

Although whey concentrate and isolate offer similar benefits, whey protein isolate (WPI) undergoes processing methods that result in a higher concentration of protein and lower amounts of fat, carbs, and lactose. WPI may be a better option for those who are limiting their consumption of fat, carbs, or lactose. Hydrolyzed whey protein powders have been partially broken down to ease digestion and speed absorption.

Casein

Casein protein powders are dairy based and keep you feeling fuller for longer as they are digested and absorbed more slowly making them a good option for muscle growth and enhancing sleep when ingested before bed.  Casein has a slightly lower essential amino acid content (34%) than whey  (43%). Casein’s larger molecule size can make it more difficult to digest for some individuals and may be linked to digestive symptoms.

Egg

Egg white protein is suitable for those who have an allergy or intolerance to dairy products is paleo friendly and has a higher amino acid content (32%) than many of the plant-based proteins. It is not as easily manufactured and therefore not as widely distributed or found in health food shops.  Egg white typically provides 26 grams of protein in a 30-gram serve.

Collagen

As mentioned in our blog, collagen is great for bone, joint, and ligament health, and a 20-gram serving of collagen peptides contains 18 grams of protein, no carbohydrates, and no fat.  Collagen has a different amino acid profile to protein powders and therefore can be added to your protein powder or taken before a workout for tissue repair.

If you would like to know how we can best support your sports nutrition goals. Make an appointment here. 

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

References

Athletic requirements for protein intake, Australian Institute of Sport- https://www.ais.gov.au/ . While athlete’s requirements have been widely debated, the Australian Institute of Sports has published this fact sheet on the Athletic Requirements for Protein Intake.

Campbell, B., Kreider, R. B., Ziegenfuss, T., La Bounty, P., Roberts, M., Burke, D., … & Antonio, J. (2007). International Society of Sports Nutrition position stand: protein and exercise. Journal of the international society of sports nutrition, 4(1), 1-7.

Witard, O. C., Garthe, I., & Phillips, S. M. (2019). Dietary protein for training adaptation and body composition manipulation in track and field athletes. International Journal of Sport Nutrition and Exercise Metabolism, 29(2), 165-174.https://journals.humankinetics.com/view/journals/ijsnem/29/2/article-p165.xml

Vitale, K., & Getzin, A. (2019). Nutrition and supplement update for the endurance athlete: review and recommendations. Nutrients, 11(6), 1289.https://www.mdpi.com/2072-6643/11/6/1289/htm

Bleakley S, Hayes M. Algal proteins: extraction, application, and challenges concerning production. Foods. 2017;6(5):33. doi: 10.3390/foods6050033. 

 

Zinc deficiency and plant based athletes

Zinc deficiency is more common in plant-based athletes.  Fact is, zinc is the powerhouse that supports performance. And knowing how being deficient in zinc can affect your progress, is essential.

Most athletes understand zinc’s role in supporting the immune system and wound healing, and its requirement for a proper sense of taste and smell but few understand its role in muscle function. It is a nutrient that needs to be consumed every day as the body doesn’t naturally produce zinc.

In our blog Robust immunity in athletes we outline the common signs of zinc deficiency, including frequent and prolonged colds, acne, dermatitis, low stomach acid, poor digestion, fatigue, and white spots or bands on nails.

In our previous blog Am I Deficient in Zinc? we outline how the high demands of sports make the elite athlete more vulnerable to illness, meaning over 65% of athletes experience regular colds and infections that sideline them from events and consistent training.

Zinc’s homeostasis is tightly regulated by different transport and buffer protein systems. Exercise has been shown to modulate zinc blood serum and urinary levels and could directly affect zinc transport around the body. The oxidative stress induced by exercise may provide the basis for the mild zinc deficiency observed in athletes and could have severe consequences on health and sports performance.

Importantly for athletes, zinc has been found to affect protein and muscle formation and regeneration due to its effects on muscle cell activation, proliferation and differentiation.

Plant based athletes in particular need to be aware of zinc rich sources, and food containing inhibitors of zinc absorption.

For vegan and vegetarian athletes, wholegrain cereals and legumes provide the highest concentrations of zinc, generally in the range of 2.5–5.0 mg/100 g raw weight. As zinc is contained within the outer layer of grains, unrefined whole grains provide higher concentrations of zinc than refined grains (up to 5.0 mg/100 g, compared with 1.0 mg/100 g).

Wholegrain breads and cereals, rolled oats, brown rice, nuts, seeds, legumes, tofu, soy products and fortified breakfast cereals are important dietary sources of zinc for everyone, not just vegetarians.

Fruit and green leafy vegetables have much lower concentrations of zinc due to their high water content. The good news is there is no evidence of greater risk of being deficient if intake of plant based zinc sources are adequate.

Well-planned vegetarian diets can provide adequate amounts of zinc from plant sources. Vegetarians appear to adapt to lower zinc intakes by increased absorption and retention of zinc. The inhibitory effects of phytate on absorption of zinc can be minimised by soaking, heating, sprouting and fermenting. Absorption of zinc can be improved by using yeast-based breads and sourdough breads, sprouts, and presoaked legumes.

Studies on runners indicate a drop in serum zinc following exercise and a higher excretion of urinary zinc than in sedentary populations. Zinc is vital for skeletal muscle, a tissue whose main function is contraction, force and movement production. As your body actually secretes zinc through sweat, it is essential for athletes to monitor zinc levels often.

It is super important not to just rely on just supplements to increase levels of zinc in your body. The risks of long-term zinc supplementation can have other potentially detrimental effects such as displacing other minerals such as copper and iron needed to form hemoglobin, therefore, increasing the risk of developing anaemia.

Zinc requires a fine balance between adequacy and deficiency and therefore essential to seek advice from a qualified practitioner who can determine the best course of action to avoid issues.

 

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

References

Walsh (2019).  Nutrition and Athlete Immune Health: New Perspectives on an Old Paradigm. Nov 6. doi: 10.1007/s40279-019-01160-3.

J.Hernández-Camacho, C. Vicente-García, D. Parsons, I. Navas-Enamorado (2020).  Zinc at the crossroads of exercise and proteostasis.  101529, ISSN 2213-2317. http://doi.org/10.1016/j.redox.2020.101529 .

Woodbridge, P., Konstantaki, M., & Horgan, G. (2020). Nutritional deficiencies in vegan runners: A comparison of actual versus recommended nutritional intake and dietary recommendations. Journal of Exercise and Nutrition, 3(3).

DE, A. K. (2020). Zinc supplementation. A must for Athletes. Science and Culture.

McClung, J. P. (2019). Iron, zinc, and physical performance. Biological trace element research, 188(1), 135-139.

Hepcidin and iron regulation

Have you ever heard of hepcidin? It’s worth understanding mainly if you are a female athlete or someone who suffers from iron deficiency anaemia.

Iron is an essential element for many biological processes. Too little iron can have many detrimental effects on your health and sports performance. We have previously discussed the impact iron deficiency and anaemia has on thyroid health and poor immunity. Excess iron can be toxic, so regulating iron levels are vital to a healthy, balanced body.

Hepcidin is an iron-regulating peptide hormone that’s produced in your liver. It works to control the delivery of iron to your blood from food through the lining of the intestines. It is the master regulator in iron metabolism and the balance between iron storage and the absorption better known as iron homeostasis. Hepcidin also tightly influences red blood cell production.

When hepcidin levels are unusually high, it reduces intestinal iron absorption and red blood cell production. Low hepcidin levels stimulate iron absorption, and iron supply to bone marrow and promote hemoglobin and red blood cell production. Iron deficiency is common among female athletes, and is much higher than their male counterparts. It is often cited as being a result of the menstrual cycle during premenopausal years. Depleted iron stores can have many adverse effects, including poor performance, low energy levels, and general well-being.

Some research has shown that active females with compromised iron possess an inherent protective mechanism once iron deficient. This adaptation allows the body to adjust to a reduced iron supply. It is proposed iron depletion may be a combination of exercise-induced losses and hepcidin accumulation.

Running is known to acutely increase hepcidin levels (peaking three hours post-exercise), therefore reducing iron absorption and recycling.

Timing iron supplementation to correlate with low hepcidin levels may enhance absorption and positively impact iron levels in the blood. In practical terms, if you exercise in the morning, you might consider taking your iron supplement straight after you exercise, before hepcidin rises.

Hundreds of athletes have used our handy anaemia quiz to help determine the likely risk of having low iron or anaemia. we encourage you to use this free tool if you have a history of iron deficiency or you are unsure if your iron stores may be declining.

Want to know more? Contact the Athlete Sanctuary to learn how we can support you further. Book an appointment here.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

 

References

Ganz, T. (2016). Hepcidin. Rinsho Ketsueki57(10), 1913-1917. DOI: 10.11406/rinketsu.57.1913.

Sim, M., Dawson, B., Landers, G., Trinder, D., & Peeling, P. (2014). Iron regulation in athletes: exploring the menstrual cycle and effects of different exercise modalities on hepcidin production. International journal of sport nutrition and exercise metabolism24(2), 177-187.https://pubmed.ncbi.nlm.nih.gov/24225901/

Alfaro-Magallanes, V. M., Benito, P. J., Rael, B., Barba-Moreno, L., Romero-Parra, N., Cupeiro, R. FEMME Study Group. (2020). Menopause Delays the Typical Recovery of Pre-Exercise Hepcidin Levels after High-Intensity Interval Running Exercise in Endurance-Trained Women. Nutrients12(12), 3866. https://pubmed.ncbi.nlm.nih.gov/33348847/

Nirengi, S., Taniguchi, H., Ishibashi, A., Fujibayashi, M., Akiyama, N., Kotani, K., & Sakane, N. (2021). Comparisons between serum levels of hepcidin and leptin in male college-level endurance runners and sprinters. Frontiers in Nutrition8. https://pubmed.ncbi.nlm.nih.gov/34136516/

Pagani, A., Nai, A., Silvestri, L., & Camaschella, C. (2019). Hepcidin and anemia: a tight relationship. Frontiers in physiology, 1294.  https://www.frontiersin.org/articles/10.3389/fphys.2019.01294/full

Sim, M., Dawson, B., Landers, G., Trinder, D., & Peeling, P. (2014). Iron regulation in athletes: exploring the menstrual cycle and effects of different exercise modalities on hepcidin production. International journal of sports nutrition and exercise metabolism24(2), 177-187.  https://pubmed.ncbi.nlm.nih.gov/24225901/[/vc_column_text][/vc_column][/vc_row]