fatigue

unusual symptoms of iron deficiency

Anaemia caused by iron deficiency is a condition in which there is not enough iron to form enough healthy red blood cells of sufficient size to carry oxygen to the tissues of the body.

Iron plays a crucial physiological role in your body. But despite its importance, iron deficiency anaemia is still a common problem among female athletes. Iron deficiency can have major adverse effects on your well-being and your athletic capacity.

It’s not uncommon for iron deficiency anaemia to be quite mild and go unnoticed. But women – and especially active, athletic women – are very prone to this condition. If gone untreated, the anaemia will worsen, and the signs and symptoms will intensify.

Without enough iron, your body can’t produce enough hemoglobin – the substance in red blood cells that enables them to carry oxygen – and as a result iron deficiency anaemia can leave you short of breath, headachy, tired, and unable to complete a training session or event with your usual enthusiasm. Iron deficiency is missed in 47-82% of females and 95-100% of male adolescents and young adult patients.

10 signs of iron deficiency  

*Fatigue that starts even after a good night’s sleep

*Restless legs

*Nausea

*Bruising

*Pale or itchy skin

*Hair loss

*Shortness of breath

*Poor concentration and decision-making, “foggy brain”

*Rapid heartbeat or “fluttering feeling”

*Headache, dizziness or light-headedness

Keep in mind this is just a small number of the  75 known symptoms of iron deficiency. Unusual cravings for non-nutritive substances, such as ice and dirt

CAUSES OF IRON DEFICIENCY

Low or little dietary intake of iron-rich foods is often blamed as the key factor contributing to iron deficiency. With plant-based eating increasing in popularity amongst the athlete community, this is a key factor for many athletes. Lack of awareness of how to consume foods that enhance iron absorption or knowledge on sources of plant-based iron-rich foods can render an athlete with symptoms in a matter of months.  Poor intake however is not the only cause of iron deficiency anaemia.

*Blood loss. Blood contains iron within red blood cells. If you lose blood, you lose some iron. Women with heavy periods are at risk of iron deficiency anaemia because they lose blood during menstruation. Athletes who are frequent blood donors are at increased risk for iron deficiency.1 Athletes who regularly use nonsteroidal anti-inflammatories are likely to have increased gastrointestinal blood losses increasing their risk of iron deficiency3.

*An inability to absorb iron. Dietary iron is absorbed into the bloodstream through the small intestine. An intestinal disorder, such as celiac disease, stomach ulcers, ulcerative colitis or Crohn’s disease, which affects the intestine’s ability to absorb nutrients from digested food, can lead to iron-deficiency anaemia. If part of the small intestine has been bypassed or removed surgically, the ability to absorb iron and other nutrients will be reduced. Inflammation in the digestive tract is aligned with symptoms such as bloating, gas, diarrhoea or constipation, food intolerances, or loud gurgling, and may signal the integrity of the gut lining may be compromised. Without good integrity, absorption of nutrients is also reduced.

*Low stomach acid. Adequate stomach acid (hydrochloric acid- HCL) is required to break down minerals such as iron and extract them from the food we eat. Low stomach acid is a common issue following times of prolonged physical or emotional stress and can be found alongside iron deficiency.

*Iron stealers. Bacteria overgrowth, Helicobacter pylori, and parasites within the digestive tract can impact the way iron is absorbed and may contribute to blood loss, therefore, contributing to iron deficiency over time.

*Post natal– Without iron supplementation, iron deficiency anaemia occurs in many pregnant women due to the iron requirements of the mother and baby. Post-natal iron deficiency can occur as many women are naturally preoccupied with their new arrival and forget to have adequate medical checkups for themselves. Fatigue is often experienced by mother’s and therefore iron deficiency can go undetected for many months. This depletes not only the mother but also the baby’s supply of iron who depends on the mother for iron for the first 6 months of life until solids are introduced.

Hundreds of athletes have used our handy anaemia quiz to help determine the likely risk of having low iron or anaemia. Find out if you are getting low on iron here.

Want to know more? Contact the Athlete Sanctuary to learn how we can support you further.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

 

References

  1. Choe, Y. H., Kwon, Y. S., Jung, M. K., Kang, S. K., Hwang, T. S., & Hong, Y. C. (2001). Helicobacter pylori-associated iron-deficiency anemia in adolescent female athletes. The journal of Pediatrics, 139(1), 100-104.
  2. Eiduson, R., Heeney, M. M., Kao, P.-C., London, W. B., Fleming, M. D., & Shrier, L. A. (2022). Prevalence and Predictors of Iron Deficiency in Adolescent and Young Adult Outpatients: Implications for Screening. Clinical Pediatrics, 61(1), 66–75. https://doi.org/10.1177/00099228211059647
  3. Safarova, K. N., Dorogoykina, K. D., & Rebrov, A. P. (2019). Is anemia a clinical marker of NSAID-induced upper gastrointestinal lesions in patients with spondyloarthritis?. Almanac of Clinical Medicine, 47(5), 410-418. https://doi.org/10.18786/2072-0505-2019-47-037
  4. Hinton P. S. (2014). Iron and the endurance athlete. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolism, 39(9), 1012–1018. https://doi.org/10.1139/apnm-2014-0147
  5. Mayo Clinic (2022). Iron Deficiency anemia. https://www.mayoclinic.org
  6. Sim, M., Dawson, B., Landers, G., Trinder, D., & Peeling, P. (2014). Iron regulation in athletes: exploring the menstrual cycle and effects of different exercise modalities on hepcidin production. International journal of sports nutrition and exercise metabolism, 24(2), 177–187. https://doi.org/10.1123/ijsnem.2013-0067

 

Vitamin D deficiency

Vitamin D deficiency has consequences well beyond bone health.

Vitamin D is gold.

Vitamin D is so important to the body, immune cells, brain, colon, breast, and other cells have the ability to also activate it locally when required. Although labelled a vitamin, calcitriol (bio-active vitamin D) acts more like a hormone within the body. It is involved in many essential functions well beyond bone health.  Vitamin D is critical for inflammatory modulation, hormonal and immune functions as well as cardiovascular, mental health and pancreatic function. The active form of vitamin D interacts with receptors in the intestine, bone, brain, heart, immune cells and skeletal muscle.  Vitamin D functions as a modulator of up to 1000 genes involved in cellular growth and protein synthesis.

Vitamin D plays an important role in an athlete’s health, training and performance.

Studies show it may even be necessary for optimal muscle function and performance as muscle performance is impaired by suboptimal vitamin D status. Deficiency induces atrophy of fast twitch muscle fibers, impairs calcium uptake and prolongs time to peak contractile tension and relaxation. Studies also show Vitamin D deficiency may delay rehabilitation from injury.

In sporty pregnant women, low vitamin D levels are linked to pre-eclampsia, gestational diabetes and adverse pregnancy outcomes. Vitamin D also plays a part in regulating insulin, blood sugar balance and thyroid hormones. Research shows that a deficiency of vitamin D is associated with a high risk of thyroid antibodies, which are found in individuals with autoimmune thyroid disorders.

Vitamin D is most commonly known in the athletic community for its influence on bone health and prevention of bone injury. Vitamin D influences bone health by upregulating expression of genes that enhance intestinal calcium absorption, and reabsorption by the kidneys along with increasing bone-building cell activity. Studies show calcium absorption significantly increases when vitamin D levels are sufficient. Calcium absorption is reduced to 10-15% with low vitamin D levels and stress fracture risk significantly increases.

Typically, 80% of our vitamin D is obtained from the sun and 20% from food sources.

Signs of Vitamin D deficiency

  • fatigue and tiredness
  • lower back pain
  • recurrent colds and infections and poor immunity
  • stress fractures
  • heaviness in the legs
  • recurrent injuries
  • muscle pain, weakness, poor muscle contraction and relaxation
  • mental health issues, low mood, seasonal sadness and depression
  • hormonal imbalances and PMS
  • anaemia and low iron
  • pale floating stool
  • photosensitivity

According to Sunsmart Australia, one-third of Australians are low in Vitamin D.

10 Reasons your vitamin D is low

Vitamin D can be made by our body when skin is exposed to sunlight through a complex activation process, however, what many people fail to realise is that this process doesn’t always occur efficiently or reach levels required for optimal health. Vitamin D production may vary depending on the time of day of sun exposure, season, cloud cover, smog, latitude, skin pigmentation, age, and sunscreen use.

We often see patients with low levels of vitamin D despite being out in the sun daily. There are several reasons why vitamin D levels drop despite sunlight exposure.

1. As vitamin D is fat-soluble and stored in fat cells, individuals with low body fat, may be disposed to vitamin D deficiency as their storage tank is smaller.

2. Activation and production of vitamin D are inhibited by magnesium deficiency, inflammation, and excessive use of sunscreen.

3. Individuals with any form of malabsorption issues, liver or kidney issues, coeliac’s disease, Crohn’s, vegans, and thyroid issues can be prone to deficiencies.

4. Anyone with a history of anaemia should also be aware of the bidirectional influence between iron and vitamin D. The activation of vitamin D in the kidneys requires iron-containing compounds ferredoxin reductase and ferredoxin. Iron deficiency may therefore contribute to the inactivation of vitamin D. Vitamin D deficiency may also be associated with higher hepcidin (a pro-inflammatory mediator) in the liver.  Hepcidin will elevate ferritin stores and down-regulate intestinal absorption of iron from food and impair storage iron release. Hundreds of athletes have used our handy anaemia tool to help determine the likely risk of having low iron or anaemia.

5. Diets containing limited seafood, eggs or dairy such as vegan diets may also reduce vitamin D intake.

6. Insufficient direct UVB exposure (due to smog, cloud cover or latitude), early- or late-day training, indoor training, geographic location further away from the equator and sunscreen use (SPF of 15 lowers vitamin D synthesis capacity by 98%).

7. Disruption to the microbiota and gut inflammation may also affect the availability of vitamin D.

8. In addition some individuals may find it difficult to increase their vitamin D levels if they have low antioxidant status.

9. Medications such as anticonvulsants, corticosteroids, cimetidine, theophylline, statins or the weight loss drug orlistat.

PATHOLOGY TESTING  

As a general guide, Osteoporosis Australia recommends most people should have levels of at least 50 nmol/L at the end of winter, which means people may have higher levels during summer (60-70 nmol/L). However, in order to maintain optimal health, athletes should aim for serum levels over 90 nmol/L ideally between 100 and 130 nmol/L.

Treatment

Daily sunlight exposure on your skin especially on large areas such as the back, chest, legs and arms (25-60 minutes in winter) without suntan cream, is a great way to keep levels topped up. Athletes living in southern states of Australia and New Zealand need 30 minutes of direct skin exposure (springtime) on large areas of skin such as back, arms, chest or legs closer to midday. Athletes living closer to the equator may require 15 minutes before 10 am. During this time avoid putting sunscreen on, then for the rest of the day, cover up. Lunchtime exercise with as much skin exposure as possible (within decency) is a great way to give yourself a vitamin D fix, especially in winter months.

Get tested biannually- before winter and again in spring.

Consume vitamin D-rich foods on a daily basis such as oily fish like cod, salmon, sardines or tuna, egg yolks, sun-dried mushrooms, and fortified milk, butter and fortified cereals. Some individuals may benefit from cod liver oil which also contains vitamin A and essential fatty acids.

When levels are low, take a quality supplement in the correct dosage range and a probiotic. Certain probiotics such as Lactobacillus rhamnosus LGG and Lactobacillus plantarum enhance levels synergistically.

Obtain adequate magnesium-rich foods such as spinach, pumpkin seeds, almonds, black beans, oyster mushrooms, avocado, figs, yogurt or kefir and banana. Chocolate also contains magnesium.

 

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

Blood sugar

To keep your energy sustained, it is important to maintain blood sugar control. Natural blood sugar control is possible when done correctly and with professional guidance and supervision. When individuals fail to fuel themselves properly, they may experience reactive hypoglycemia (low blood sugar) or dysglycaemia (abnormal blood sugar levels) with an exaggerated insulin response. As a result, there is a subsequent dramatic drop in blood glucose, causing physical and emotional symptoms (see below). When blood glucose levels become unstable we can feel like we are on an energy roller-coaster throughout the day.

Symptoms can mimic other common issues such as anxiety or even menopause.

Symptoms of blood sugar dysregulation:

  • Nausea
  • Seeing flashes of light
  • Moodiness and “hangry” relief after eating
  • Negative attitude/ irritability
  • Exaggeration of relatively minor problems
  • Feeling emotionally flat or depression
  • Lightheadedness or dizziness
  • Sweating and flushes
  • Sugar cravings
  • Fatigue
  • Heart palpitations
  • Shakiness
  • Paleness
  • Cold/clammy skin
  • Poor concentration and memory

Thyroid issues, hormonal imbalances, or high exercise demands can exaggerate these symptoms, especially with inadequate fueling in between multiple daily training sessions. There are a number of simple steps that may help stabilise blood sugar.

1. Protein is essential to blood sugar stabilisation and should be included in every meal including breakfast. Quality protein can be found in lean animal meats (kangaroo, lamb, beef, chicken) and fish. Vegetarian options include tofu, tempeh, legumes, eggs, dairy, and high-protein grains such as quinoa, buckwheat and amaranth. Vegans and vegetarians must practice protein source combinations to obtain all the essential amino acids.. For example: consume chickpeas with brown rice.

Athletes should ideally consume 1.2-1.6 grams of protein/kilogram of body weight which equates to 60-80 grams of protein for a 50kg female and 90-128 grams for an 80kg male athlete per day. It is beneficial to have 20 grams of protein with carbohydrates within 30- 60 minutes of completing a training session. A good option is a smoothie with a scoop of protein powder (pea, brown rice or whey if tolerated), a small can of tuna or 2-3 eggs.

2. Carbohydrates
Intake of low GI (Glycemic Index) carbohydrates will help keep blood sugar levels more sustained, and energy levels consistent. A high GI carbohydrate will cause a surge in blood glucose, triggering a response from the pancreas. This can contribute to the symptoms described previously.

Good sources of complex carbohydrates include porridge, Bircher muesli, brown, basmati or wild rice, barley, oats, buckwheat, quinoa, amaranth, teff, rye, sweet potato, and root vegetables with skins on. Sourdough bread, corn on the cob, bananas, fruit smoothies with protein powder, and homemade muffins using wholemeal flours such as hemp, chia or buckwheat are all good options. Consuming carbohydrates with quality fats and soluble fibre also reduces the GI of foods.

3. Magnesium
Magnesium assists with blood sugar control by supporting healthy insulin secretion.

Magnesium is abundant in amaranth (a grain), pumpkin seeds, dark chocolate and raw cocoa, wholemeal bread, quinoa, firm tofu and dark leafy vegetables. It is also found in oat bran, brown rice, cooked spinach, avocado, coconut water, kale, legumes, sesame seeds and cashews.

4. Chromium
Chromium deficiency reduces your body’s ability to use carbohydrates for energy and raises your insulin needs. Chromium may enhance the effects of insulin or support the activity of pancreatic cells that produce insulin. Chromium is found in meats, fish, poultry, wholegrains, dairy, broccoli, cheese, mushrooms, asparagus, green beans, apples, bananas, grape juice and potato.

5. Probiotics
Probiotics especially those containing more than one species of beneficial bacteria may help regulate blood sugar by influencing the way the body metabolises carbohydrates by reducing inflammation and preventing the destruction of pancreatic cells that make insulin.

Maintaining energy throughout the day

  • Have regular meals throughout the day eating every 2 hours
  • Consume protein at every meal. Aim to make up at least 1/3 of your meal from protein
  • Stay hydrated by drinking water regularly (2-3 litres per day minimum)
  • Cinnamon, nutmeg, cloves, vanilla, stevia, and ginger can all be used instead of sugar to add sweetness to food.
  • Carbohydrates higher in fibre and from unprocessed sources are better
  • Consume carbohydrates within 30 minutes of completing a session
  • Fat reduces gastric emptying time and as a result, slows down the absorption of glucose from the meal. Consume beneficial fats with carbohydrates from raw nuts and seeds, fish, avocado and cold-pressed oils.
  • Increasing the acidity of food or meals will slow gastric emptying time. A simple tip is to add vinegar dressing to salad or vegetables.
  • Short-term supplementation of magnesium, chromium, probiotics or cinnamon, and other blood sugar-stabilising herbs and nutrients may be beneficial for some individuals.

Always seek help from a healthcare practitioner if your symptoms persist.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

Iodine and thyroid hormones

Iodine and thyroid hormones are essential to sports performance and yet many athletes are iodine deficient.

Thyroid hormones perform many key functions in the human body including regulation of body temperature, metabolism and play an important role in how an athlete creates and uses energy. Thyroid hormones bind to receptors on each cell’s membrane surface and inside the cell at the mitochondria where energy is made. Binding activates the cell’s energy and metabolic functions.

Iodine is a key trace mineral stored primarily in the thyroid gland. The thyroid gland produces the key thyroid hormones thyroxine (T4) and triiodothyronine (T3), using iodine and other key nutrients such as selenium and tyrosine.  To further convert thyroid hormones into activated forms the body can use, sufficient levels of magnesium, iron, selenium, vitamin C and zinc are also required.

Key hallmarks of iodine deficiency and low thyroid function in athletes include:

  • Fatigue and low stamina can really cause havoc to an athlete’s training and racing season
  • Lethargy, muscle aches, cramps, pains and weakness
  • Low basal body temperature (temperature first thing in the morning)
  • Intolerance to cold weather
  • Cold hands and feet
  • Slow brain function, poor memory and “foggy” brain
  • Constipation
  • Joint pain
  • Thin, brittle hair or hair loss
  • Dry flaky skin
  • Menstrual disorders and fertility problems
  • Weight gain and slower metabolic rate

Iodine is primarily lost through sweat, although some are also excreted in the urine.  Some studies suggest athletes may lose more iodine through sweat in an hour of vigorous exercise than through their entire daily urine output.  High levels of sweating during exercise can deplete iodine levels and result in dehydration and poor performance.

The recommended iodine intake is 150ug/ day but some studies show on average athletes may lose nearly 50% of this requirement in sweat alone. Athletes living in more humid conditions (even without exercise) can lose a greater amount of sweat than those living in cooler environments.

Athletes performing at high intensity for prolonged periods of time, particularly in a humid environment, have a significantly increased risk of becoming iodine deficient if they don’t pay special attention to replacing this important nutrient.

What else can impact iodine and thyroid function?

It is important to keep in mind there are lots of things that impact the thyroid gland.

Chronic physical or emotional stress and high cortisol will result in elevations of another thyroid hormone called reverse T3 (rT3). Pesky rT3 inhibits our active thyroid hormone T3.

Heavy metals and chemicals, a low carbohydrate diet and fasting and selenium deficiency can also reduce T3 levels.  There are many chemicals and metals in our environment known as “endocrine disruptors” that inhibit healthy thyroid function. Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are common in our environment containments (in soil and food grown in that soil including meat, electronics, electrical cables, paints, plastics, furniture ) which can disrupt thyroid hormone signalling at the receptor level.

Perchlorate found in food and water inhibits the thyroid’s ability to absorb iodine from the bloodstream while long-term consumption of fluoridated drinking water is associated with hypothyroidism (low thyroid function).

Dioxins, BPA (found in cling wrap, drinking bottles and plastics) or bisphenols in tinned foods and plastic containers and plastic wraps, are also endocrine disruptors.

Non-stick cookware, fragrances, detergents, cosmetics and skincare, foods exposed to pesticides and herbicides, flame retardant material, new carpets, furniture and clothing may also be sources of endocrine disruptors.

When a female athlete has excess oestrogen, it may reduce the efficiency of thyroid hormone by 25%. Female athletes with high testosterone levels or insulin resistance may also have reduced thyroid efficiency due to a reduction in the globulin that carries thyroid hormone around the body (thyroid binding globulin) which means not enough thyroid hormone can circulate. But the hormone dance doesn’t stop there.

Low thyroid function due to low iodine or other nutrients can also cause receptor sensitivity issues with other female hormones such as progesterone causing PMS symptoms, irregular periods and fertility issues.

Cortisol up-regulates estrogen and high oestrogen also up-regulates cortisol which increases the binding of T4 up to 3 times, resulting in lower thyroid hormone activity, lowered metabolism and weight gain.

As thyroid hormones influence the tight junctions in the stomach and small intestine, athletes with low iodine and thyroid can also suffer from digestive complaints such as gas, bloating, diarrhoea or constipation and digestive infections.

Approximately 20% of our thyroid hormone T4 is converted to T3 in the gut by bacteria. So if digestion is disrupted and inflammation exists, the conversion will be impacted. Thyroid hormones also influence the tight junctions in the stomach and intestine that prevent large undigested molecules from passing into our bloodstream. Hence why thyroid abnormalities are also associated with leaky gut, food intolerances, constipation, reflux, heartburn, and dysbiosis (gut microbiome imbalance).

Thyroid hormones also influence the foundation of our immune system in the stomach called Gut Associated Lymphoid Tissue (GALT). GALT is made up of several types of lymphoid tissue that store immune cells, such as T and B lymphocytes. The majority of infectious agents invading the human body gain access through the gut and GALT protects us against these pathogens.  Therefore, an athlete can be more susceptible to infections if thyroid hormones are low or iodine deficiency exists. n

Other nutrients have an impact on iodine and thyroid function. Many athletes suffer from anaemia or low iron and believe their fatigue and poor performance may just be iron related. The situation is a double-edged sword as iron deficiency impairs thyroid hormone synthesis and low thyroid function impairs gastric secretions which reduce iron absorption from food.

Another tricky synergy exists between zinc, copper and thyroid function. Zinc is required for T4 and T3 production and therefore zinc deficiency may lead to low gastric secretions and low iron. Zinc and copper also antagonise each other so low zinc may lead to high copper.  Excess copper slows thyroid function and depletes zinc.

Iodine concentration in foods is variable depending on soil concentrations and the amount of fertilizer used with farming methods. Therefore, our food iodine content also varies greatly in grains, meats and vegetables. Although the daily recommended iodine intake is 150ug, it can still be tricky even when eating iodine food sources due to such variability.

Metabolic acidosis is a condition when the body’s pH is too acidic (pH of 7.35 or lower). This may occur in athletes from prolonged exercise at high intensity leading to lactic acid build-up. Chronic metabolic acidosis may decrease T4 and T3 and increase TSH concentrations and may lead to subclinical hypothyroid states.

  1. Tracking athletes’ basal (morning) body temperature can assist with identifying issues with thyroid function. Anything less than 36.4c suggests your thyroid may need some attention.
  2. Athletes should not rely on blood tests to confirm thyroid function status. Under activity of the thyroid gland results in low basal temperatures and symptoms of low thyroid function are not detectable by the standard laboratory tests-thyroid stimulating hormone (TSH), T4 and T3.
  3. Athletes should consume sufficient sources of iodine on a regular basis. Good food sources include seafood (wild sea fish contain more iodine than freshwater fish), kelp and other seaweeds (wakame, Kombu, Nori), kelp noodles, Sushi are a rich source of iodine. Other reasonable sources include milk and yogurt, navy beans, eggs, cranberries, strawberries and some meats.
  4. Since 2009 all packaged bread has added iodine in Australia although freshly baked bread may not disclose the amount added. Iodized salt is also available but keep in mind too much salt is not great for blood pressure and even sea salt and Himalayan salt contains 90% sodium chloride which is not desirable as chloride inhibits iodine absorption.
  5. Be mindful of high intake of goitrogenic vegetables. The cabbage family including cabbage, kale, broccoli, cauliflower, Brussels sprouts, radishes, turnips, watercress, spinach contain isothiocyanates (goitrogens) which may block the uptake and utilisation of iodine in the thyroid gland. Cooking these vegetables reduces the goitrogens and the likelihood of their impact.
  6. Although controversial, some evidence suggests soy supplements such as soy protein powders should be avoided if you have been diagnosed with low thyroid function as they may also reduce the genetic expression of the enzymes needed to produce thyroid hormones.
  7. Get your vitamin D levels checked. Vitamin D deficiency is common in Australia and in athletes with low body fat this issue can be even more prevalent as Vitamin D is stored in fat cells. Vitamin D is associated with hypothyroidism and thyroid autoimmune conditions while studies show serum vitamin D > 125 is associated with a 30% reduced risk of hypothyroidism.
  8. Get your hormones, cortisol, iron, zinc, copper and iodine levels checked.
  9. Improve your gastric acid secretions by consuming bitter foods (endive, rocket, radicchio, chicory, dark chocolate) on a regular basis or sip lemon in water or apple cider vinegar before meals.
  10. Reduce your exposure to endocrine disruptors by drinking filtered water, installing filters on shower heads, choosing natural water sources to swim in rather than chlorinated pools, eating pesticide-free or ideally organic foods, choosing organic personal care products, cosmetics and detergents, avoiding storage of food in plastics and instead use wax wraps and choose low emitting products when renovating or building your home.

If you suspect you may be suffering from iodine deficiency or reduced thyroid function, consider making an appointment with the Athlete Sanctuary to help navigate your recovery process.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au