June 2020

menopause

Some women experience absolutely no symptoms during their transition through menopause but if you are like 80% of women who do, it’s reassuring to know there are treatment options available. Help for menopause is here.

Perimenopause is the stage where most of the symptoms begin and these can persist for over a decade. Menopause officially commences 12 months after your last period. Women can go through menopause anywhere between the ages of 40 and 58 years but the average age is 52 years.   Symptoms can occur due to the falling levels of estrogen and progesterone, which has a multifaceted impact on organs and tissues throughout the body.

Most women identify menopause with hot flushes, night sweats, vaginal dryness, mood swings, poor libido and fatigue. Symptoms usually occur in the perimenopausal phase due to declining progesterone. Oestrogen actually increases to levels 30% higher than before but can go through periods of variations similar to a roller coaster leading to insomnia, depression, poor concentration, irritability, anxiety and poor stress tolerance and lethargy. In the later stages of perimenopause, oestrogen declines which may contribute to other symptoms such as heart palpitations, joint pain, osteoporosis and mental health issues.

One of the associated effects of estrogen decline is an increased risk of osteoporosis.  This is due primarily to the 1-2% loss of bone density per year of menopause, as well as 10 years post-menopause.  Estrogen decline is also associated with elevated cholesterol, cardiovascular disease, hypothyroidism, urinary tract infections and thrush.

Some women have concerns about the use of hormone replacement therapy (HRT) or are unable to use this option due to breast or ovarian cancer risk. Fortunately, there is now a large body of evidence that supports the use of herbal and nutritional medicines during the menopausal transition.

DIETARY INTERVENTIONS 

Phytoestrogens are naturally occurring estrogen-like compounds found in plants, fruits, or vegetables and are commonly divided into three main classes: isoflavones, lignans, and coumestans.

Isoflavones are found in the legume family, with high amounts in soybeans and soy products.

Lignans are found in high-fibre foods such as unrefined grains, cereal brans, and beans, with flaxseed being a particularly good dietary source of lignans. A recent systematic review found that women who consumed protein bars containing flaxseed (410 mg of lignan) for  6 weeks reported a 50% decrease in hot flushes. Seed cycling can be helpful for women who want to boost their intake of fatty acids and lignans.

Coumestan-rich foods include alfalfa and clover sprouts, peas, pinto beans, and lima beans.

Herbs

Hops (Humulus lupulus) dampens tension and anxiety.  The active ingredient in hops, 8-prenylnaringenin, is a potent phytoestrogen and has been demonstrated to reduce vasomotor symptoms by improving the ability of the blood vessels to expand and contract. Numerous clinical trials have also documented significant reductions in the frequency of hot flushes, sweating, insomnia, heart palpitations and irritability in women who used a hops extract for 6 weeks.

In clinical practice, a combination of herbs is often used to support women during the transition through menopause. Korean ginseng (Panax ginseng), which is considered to be a “buried treasure medicine”, is another popular herb for active women suffering from fatigue. Ginseng’s active constituents include saponins, amino acids, vitamins (particularly folic acid and niacin), alkaloids, phenolic compounds, and flavonoids. Ginseng has been widely used in traditional medicine to assist with building resilience to stress and used as an energizer, to increase libido, and testosterone and alleviate menopausal symptoms. Clinical trials have shown ginseng significantly reduced depression and improve perceived well-being, exercise performance and energy in perimenopause.

Another popular herb is chasteberry, or vitex.  This herb has shown positive results in reducing PMS, anxiety, hot flushes and breast tenderness in perimenopausal women.  Vitex is used to support the transition from perimenopause to menopause due to its ability to increase progesterone levels and help maintain a healthy balance between progesterone and estrogen.

For women experiencing persistent hot flushes or night sweats as a result of menopause, Red Clover (Trifolium Pratense) may often be prescribed.  This herb contains high levels of phytoestrogens for improving hormonal balance, as well as helping improve bone density in those at risk of osteoporosis.  Several clinical trials demon straight the isoflavones present in red clover inhibit bone resorption and therefore reduce bone turnover associated with osteoporosis.

Ginkgo Biloba is similar to red clover because of the phytoestrogens it contains and its ability to naturally elevate estrogen levels.  Studies show that Ginkgo Biloba can reduce mood fluctuations associated with both PMS and menopause, as well as improving libido in 84% of trial participants after 4 weeks.

Sage, most commonly prescribed as a tea, has long been used in the management of fevers.  However, there is also evidence to support the use of sage for menopausal hot flushes and night sweats.  A study that assessed the use of fresh sage leaves in food or as tea demonstrated that the intensity and frequency of hot flushes were significantly reduced over a period of 8 weeks with consistent use.

Hormones play an integral role in your health, and changes in hormone balances can be challenging. There are many different ways that nutrition can be used to navigate menopause, without having to experience the numerous, negative side effects of HRT.

As with any element of health, there is never a one-size-fits-all approach and therefore we recommend individualised treatments for menopausal symptoms.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.athletesanctuary.com.au

Best collagen for tendon repair

Choosing the best collagen for tendon repair can be challenging. There are so many to choose from. All collagen powders are not created equal. Understanding the different forms and their sources can be helpful when making your decision.  Keep in mind collagen can be helpful in the repair of tendons, bones and ligaments, improving skin elasticity and gut health.

Recent studies have helped to fine-tune dosage recommendations and nutrient combinations to enhance its effectiveness. As the quality and volume of collagen produced by our body reduces with age, master athletes may benefit from consistent supplementation.

What does collagen do?

Collagen is a major structural protein and building block made within your body. Collectively, collagen comprises 30% of the body’s protein as amino-acids, specifically glycine, proline, hydroxyproline and arginine.  Collagen provides structure and acts like glue to your skin, hair, skeleton, tendons, muscles, ligaments, corneas, teeth and blood vessels. Hydrolysed collagen is similar to gelatin but structurally varies. Collagen contains tri peptides whereas gelatin contains simple amino acid chains.  Peptide chains within collagen act as signalling molecules to fibroblasts which increase collagen, elastin and hyaluronic production. They also signal anti-inflammatory agents and increase the production of antioxidants.

There are 29 different types of collagen, all with slightly different roles but 80 – 90 % of the collagen in the body consists of types I, II, and III.  Together all forms serve the same purpose; to help tissues withstand stretching. Although all forms are essential in the body, research tends to focus on types I-III when it comes to athletes. Let’s explore these three types in a little more detail.

Type I  forms the reinforcing rods in bone, cartilage, tendons, teeth and connective tissue and is the most dominant form within the body making up 90% of all collagen. It is also the collagen that forms scar tissue and skin.

Type II (also known as hyaline or articular cartilage) is the major collagen in elastic cartilage and is the gel like substance designed to provide cushioning and allow joints to absorb shock. Its rigid macromolecules provide the strength and compressibility that allow it to resist large deformations in shape during movement.

Type III supports the structure of muscles, organs, and arteries.

Collagen and vitamin C for repair – the research evidence

Recent studies have also shown the combination of 500mg of vitamin C and between 5 – 15 grams of collagen is beneficial when taken one hour before exercise. Positive results do not appear to be dose dependent when within this range. Several studies including a study from the AIS (Australia Institute of Sport) showed significant improvements in achilles tendon injuries when taken for three to six months.

A 2017 study also demonstrated significant improvements in activity-related joint pain in 139 athletes,  positive changes to ankle function and pain following supplementation for sprains.  Collagen also reduces the risk of subsequent sprains for 3 months after supplementation.

Most collagen powders on the market are derived from shellfish, beef, chicken or pork. As a general recommendation, better quality collagen supplements are derived from grass-fed animals or wild-caught seafood. Vegans should be aware plants do not make collagen. There are currently no clinical trials that support bone broth as a reliable source of collagen peptides.

Vitamin C

Vitamin C converts proline and glycine to hydroxyproline.   Pre-clinical studies have also shown vitamin C has the potential to accelerate bone healing after a fracture, increased type I synthesis, and reduce oxidative stress.

Additional dietary intake of vitamin C-rich foods during rehabilitation may also be beneficial. Good sources include berries, red capsicum, broccoli, kiwi, guava, citrus, rosehip and indigenous foods such as camu camu, goji berry and Kakadu plum.

Other beneficial nutrients

Copper also plays a role in production as it activates an enzyme called lysyl oxidase that is required for maturation. Copper is found in beef liver, crab, oysters, sunflower and sesame seeds, cocoa powder, cashews, hazelnuts, peanuts, almonds and lentils.

Zinc helps with the production and activates a protein that remodels collagen during wound healing. Zinc is found in seafood, oysters, pepitas, nuts, poultry and meat.

Manganese activates enzymes such as prolidase that your cells use to make proline and gives collagen fibres their shape. Brown rice, oats, pineapple, peanuts, and pecans all contain manganese.

Amino Acids

Insufficient protein intake or overall energy intake impedes wound healing and increases inflammation to possibly deleterious levels. During the healing process, energy expenditure is increased, particularly if the injury is severe. Energy expenditure may increase between 15% – 50%, depending on the type and severity of the injury.

Given that muscle loss may begin from inactivity during an injury recovery phase within 36 hours and healing processes are heavily reliant on synthesis of collagen and other proteins, the importance of dietary protein should not be understated. If you are in the unfortunate position of being injured, protein intake of 2 grams/ kg of body weight per day is advocated.

Meat, poultry, seafood, dairy, legumes, and tofu are all excellent sources of amino acids. Plant-based athletes may combine protein sources to ensure all essential amino acids are available for protein synthesis.

In addition, specific foods rich in proline and glycine may be beneficial.

Proline is found in egg whites, wheat germ, dairy products, cabbage, asparagus, and mushrooms.

Glycine is found in the skin of pork or chicken and gelatin.

Making your own gelatin chews are an easy way to boost glycine intake.

Gelatin is what is used to set jelly and gummy lollies. Gelatin also contains proline, valine and glutamic acid.

Be wary of sugar!  Sugar interferes with collagen’s ability to repair itself and degrades collagen. It is therefore a good idea to limit your consumption of added sugar and refined carbs when injured for several reasons.

Please remember the guidelines provided in this blog are general in nature. If you are injured, you may benefit from individualised nutritional guidance to help you get back on track. Make an appointment here

 

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

References

Clark, K. L., Sebastianelli, W., Flechsenhar, K. R., Aukermann, D. F., Meza, F., Millard, R. L.,  & Albert, A. (2008). 24-Week study on the use of collagen hydrolysate as a dietary supplement in athletes with activity-related joint pain. Current medical research and opinion24(5), 1485-1496.

Dressler, P., Gehring, D., Zdzieblik, D., Oesser, S., Gollhofer, A., & König, D. (2018). Improvement of functional ankle properties following supplementation with specific collagen peptides in athletes with chronic ankle instability. Journal of sports science & medicine17(2), 298.

Frankenfield, D. (2006). Energy expenditure and protein requirements after traumatic injury. Nutrition in Clinical Practice21(5), 430-437.

Lis, D. M., & Baar, K. (2019). Effects of Different Vitamin C–Enriched Collagen Derivatives on Collagen Synthesis. International Journal of sports nutrition and exercise metabolism29(5), 526-531.

Praet, S. F., Purdam, C. R., Welvaert, M., Vlahovich, N., Lovell, G., Burke, L. M., & Waddington, G. (2019). Oral supplementation of specific collagen peptides combined with calf-strengthening exercises enhances function and reduces pain in achilles tendinopathy patients. Nutrients11(1), 76.

Shaw, G., Lee-Barthel, A., Ross, M. L., Wang, B., & Baar, K. (2017). Vitamin C–enriched gelatin supplementation before intermittent activity augments collagen synthesis. The American Journal of clinical nutrition105(1), 136-143.

Zdzieblik, D., Oesser, S., Gollhofer, A., & König, D. (2017). Improvement of activity-related knee joint discomfort following supplementation of specific collagen peptides. Applied Physiology, Nutrition, and Metabolism42(6), 588-595.

 

Vitamin D deficiency

Vitamin D deficiency has consequences well beyond bone health.

Vitamin D is gold.

Vitamin D is so important to the body, immune cells, brain, colon, breast, and other cells have the ability to also activate it locally when required. Although labelled a vitamin, calcitriol (bio-active vitamin D) acts more like a hormone within the body. It is involved in many essential functions well beyond bone health.  Vitamin D is critical for inflammatory modulation, hormonal and immune functions as well as cardiovascular, mental health and pancreatic function. The active form of vitamin D interacts with receptors in the intestine, bone, brain, heart, immune cells and skeletal muscle.  Vitamin D functions as a modulator of up to 1000 genes involved in cellular growth and protein synthesis.

Vitamin D plays an important role in an athlete’s health, training and performance.

Studies show it may even be necessary for optimal muscle function and performance as muscle performance is impaired by suboptimal vitamin D status. Deficiency induces atrophy of fast twitch muscle fibers, impairs calcium uptake and prolongs time to peak contractile tension and relaxation. Studies also show Vitamin D deficiency may delay rehabilitation from injury.

In sporty pregnant women, low vitamin D levels are linked to pre-eclampsia, gestational diabetes and adverse pregnancy outcomes. Vitamin D also plays a part in regulating insulin, blood sugar balance and thyroid hormones. Research shows that a deficiency of vitamin D is associated with a high risk of thyroid antibodies, which are found in individuals with autoimmune thyroid disorders.

Vitamin D is most commonly known in the athletic community for its influence on bone health and prevention of bone injury. Vitamin D influences bone health by upregulating expression of genes that enhance intestinal calcium absorption, and reabsorption by the kidneys along with increasing bone-building cell activity. Studies show calcium absorption significantly increases when vitamin D levels are sufficient. Calcium absorption is reduced to 10-15% with low vitamin D levels and stress fracture risk significantly increases.

Typically, 80% of our vitamin D is obtained from the sun and 20% from food sources.

Signs of Vitamin D deficiency

  • fatigue and tiredness
  • lower back pain
  • recurrent colds and infections and poor immunity
  • stress fractures
  • heaviness in the legs
  • recurrent injuries
  • muscle pain, weakness, poor muscle contraction and relaxation
  • mental health issues, low mood, seasonal sadness and depression
  • hormonal imbalances and PMS
  • anaemia and low iron
  • pale floating stool
  • photosensitivity

According to Sunsmart Australia, one-third of Australians are low in Vitamin D.

10 Reasons your vitamin D is low

Vitamin D can be made by our body when skin is exposed to sunlight through a complex activation process, however, what many people fail to realise is that this process doesn’t always occur efficiently or reach levels required for optimal health. Vitamin D production may vary depending on the time of day of sun exposure, season, cloud cover, smog, latitude, skin pigmentation, age, and sunscreen use.

We often see patients with low levels of vitamin D despite being out in the sun daily. There are several reasons why vitamin D levels drop despite sunlight exposure.

1. As vitamin D is fat-soluble and stored in fat cells, individuals with low body fat, may be disposed to vitamin D deficiency as their storage tank is smaller.

2. Activation and production of vitamin D are inhibited by magnesium deficiency, inflammation, and excessive use of sunscreen.

3. Individuals with any form of malabsorption issues, liver or kidney issues, coeliac’s disease, Crohn’s, vegans, and thyroid issues can be prone to deficiencies.

4. Anyone with a history of anaemia should also be aware of the bidirectional influence between iron and vitamin D. The activation of vitamin D in the kidneys requires iron-containing compounds ferredoxin reductase and ferredoxin. Iron deficiency may therefore contribute to the inactivation of vitamin D. Vitamin D deficiency may also be associated with higher hepcidin (a pro-inflammatory mediator) in the liver.  Hepcidin will elevate ferritin stores and down-regulate intestinal absorption of iron from food and impair storage iron release. Hundreds of athletes have used our handy anaemia tool to help determine the likely risk of having low iron or anaemia.

5. Diets containing limited seafood, eggs or dairy such as vegan diets may also reduce vitamin D intake.

6. Insufficient direct UVB exposure (due to smog, cloud cover or latitude), early- or late-day training, indoor training, geographic location further away from the equator and sunscreen use (SPF of 15 lowers vitamin D synthesis capacity by 98%).

7. Disruption to the microbiota and gut inflammation may also affect the availability of vitamin D.

8. In addition some individuals may find it difficult to increase their vitamin D levels if they have low antioxidant status.

9. Medications such as anticonvulsants, corticosteroids, cimetidine, theophylline, statins or the weight loss drug orlistat.

PATHOLOGY TESTING  

As a general guide, Osteoporosis Australia recommends most people should have levels of at least 50 nmol/L at the end of winter, which means people may have higher levels during summer (60-70 nmol/L). However, in order to maintain optimal health, athletes should aim for serum levels over 90 nmol/L ideally between 100 and 130 nmol/L.

Treatment

Daily sunlight exposure on your skin especially on large areas such as the back, chest, legs and arms (25-60 minutes in winter) without suntan cream, is a great way to keep levels topped up. Athletes living in southern states of Australia and New Zealand need 30 minutes of direct skin exposure (springtime) on large areas of skin such as back, arms, chest or legs closer to midday. Athletes living closer to the equator may require 15 minutes before 10 am. During this time avoid putting sunscreen on, then for the rest of the day, cover up. Lunchtime exercise with as much skin exposure as possible (within decency) is a great way to give yourself a vitamin D fix, especially in winter months.

Get tested biannually- before winter and again in spring.

Consume vitamin D-rich foods on a daily basis such as oily fish like cod, salmon, sardines or tuna, egg yolks, sun-dried mushrooms, and fortified milk, butter and fortified cereals. Some individuals may benefit from cod liver oil which also contains vitamin A and essential fatty acids.

When levels are low, take a quality supplement in the correct dosage range and a probiotic. Certain probiotics such as Lactobacillus rhamnosus LGG and Lactobacillus plantarum enhance levels synergistically.

Obtain adequate magnesium-rich foods such as spinach, pumpkin seeds, almonds, black beans, oyster mushrooms, avocado, figs, yogurt or kefir and banana. Chocolate also contains magnesium.

 

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au