Immunity

Photo of Kate Smyth naturopath, performing an examination on a patient.

Sports naturopathy, also known as sports focussed naturopathic medicine, uses natural healing approaches and offers many potential benefits for athletes.

Naturopathic practitioners (Naturopaths) aim to maintain optimal health through a balanced and yet comprehensive approach. Naturopathy complements other conventional medical and allied health practices.

Potential benefits of sports naturopathy for athletes include:

Holistic Approach: Sports naturopathy takes a holistic approach to health, considering the physical, mental, and emotional aspects of an individual. A naturopath is trained in nutritional medicine, biochemistry, herbal medicine, pharmacology and pathology. A scientific medicine and a complex holistic approach can be particularly beneficial for athletes as it addresses the whole person, rather than just isolated symptoms.

Individualised Treatment: Naturopaths create personalised treatment plans for athletes based on their specific nutritional needs, sporting goals, and health conditions. This facilitates targeted and effective interventions.

Nutrition and Dietary Guidance: Proper nutrition can enhance energy levels, prevent illness and nutrient deficiency, and overall sports performance. A food first approach focusses on using food as medicine. A naturopath will also provide balanced and nutritious guidelines to meet an athlete’s nutritional requirements.

Natural Solutions:  Heavily researched and synergistic natural solutions such as vitamins, minerals, and herbal medicines are used to support athlete’s health and performance. These supplements are chosen based on scientific evidence and matched to the individual’s needs. We draw on the vast number of published research papers on global medical databases and carefully assess the integrity quality and validity of papers and underlying research projects.

Stress Management: Athletes can experience high levels of physical and emotional stress as part of living a very full life.. Adaptogens are a category of natural medicines that modify stress hormones such as cortisol and support calming neurotransmitters like GABA. Adapatogens better equip the athlete to consistently perform well under pressure by adjusting the nervous system’s response to stress.

Injury Prevention and Repair: Naturopathic treatments promote healing of bone fractures, muscle, tendon and ligament damage and underlying inflammation. Naturopathic anti-inflammatory medications and nutrition have been shown to have similar effects as non-steroid anti-inflammatory medications with limited side effects.

Detoxification: Where appropriate gentle detoxification approaches can help athletes maintain optimal organ function and overall health.

Pain Management: Sports naturopathy offers various natural solutions that ease pain as part of injury management, neurological issues, painful periods and headaches. These approaches may help athletes manage pain without relying solely on pharmaceutical medications.

Enhance Recovery: Poor recovery can be a sign of underlying health imbalances. Minerals and herbal medicines promote muscle relaxation and reduce inflammation. Sports naturopathy complements other recovery techniques such as water running, anti gravity, Normatec recovery systems, cold water and sauna therapy. A naturopath may also refer to massage, kinesiology, bowen, osteopathy and myopathy.

Optimise Immune Function: Immune support is crucial for athletes who are prone to overexertion and increased susceptibility to illness. So often athletes get run down and sick right before competition and in the weeks following. A preventative approach including key immune boosting nutrients, wholefood medicines and herbs can be beneficial and well tolerated during times of high stress.

Digestive Health: Proper digestion and absorption of nutrients is key foundation in sports naturopathy. Naturopaths work to resolve digestive symptoms such as bloating, diarrhoea and urgency are common issues.

Long-Term Wellness:. By addressing the root causes of health issues and providing preventive strategies, athletes can aim for sustained peak performance over time and minimise health issues.

It’s important to remember that while sports naturopathy can offer these potential benefits, as with all medical interventions, individual responses may vary. Athletes should consult with a qualified sports focussed naturopath to create a comprehensive and well-rounded approach to their health and performance.

Photo of a bowl of pumpkin and ginger soup with a spoon.

We all know that winter weather calls for delicious, heart warming soups. This delicious pumpkin soup recipe has the added bonus of ginger – an ingredient that aids digestion and is packed with antioxidants that help prevent arthritis, inflammation and various types of infection. There are so many health benefits of ginger!

Ingredients

1kg pumpkin, peeled, seeds removed and cut into 4cm pieces

75g ginger, roughly chopped

2 garlic cloves

2 tbs extra virgin olive oil

1L (4 cups) vegetable or chicken stock

2 tbs finely chopped dill

1/3 cup (50g) toasted hazelnuts, chopped

Method

Preheat your oven to 180 degC.

Place your pumpkin, ginger and garlic on a large baking tray and drizzle with oil. Season, then toss to coat. Roast for 30 minutes or until the pumpkin is soft (don’t let the garlic burn).

Puree mixture in a blender or food processor with 2 cups (500ml) of stock, then season. If there are lumps then strain through a fine sieve. Place the soup in a large saucepan with remaining 2 cups (500ml) of stock and warm over a medium-low heat.

Divide the soup between 4 bowls and serve with dill and toasted hazelnuts and what ever other toppings you love on your soup – if you wish a dollop of marscapone.

Enjoy x

relative energy deficiency

Relative Energy Deficiency in Sport – or RED-S as it is known – is caused when there’s a negative balance between dietary energy intake and the energy output needed to promote optimal health, performance, growth and daily life.

Up until 2014 RED-S was referred to as the female athlete triad – disordered eating, menstrual disturbances and low bone density. At this time the International Olympic Committee updated their position statement with the new term (RED-S) to be far more reflective of the wider-spread effects in both female and male athletes – on performance and throughout the body.

In 2018 the IOC published the RED-S Consensus Statement Update.

More than 10% of athletes experience RED-S throughout their career, yet despite its potential to have such adverse effects, RED-S is still only just becoming widely recognised and discussed within a majority of sports.

Symptoms of RED-S

There are many physical symptoms of RED-S, including:

  • Fatigue
  • Recurring illness
  • Difficulties staying warm in the winter and cool in summer months
  • Poor sleep quality
  • Stress fractures and low bone mineral density, and impaired accumulation of peak bone mass (PBM)
  • Weight loss, or below healthy weight
  • Growth restriction in junior and teenage athletes
  • Disordered eating or eating disorders such as bulimia or anorexia, orthorexia, restrictive disorders or recurrent dieting/fasting
  • Digestion issues
  • Vitamin and mineral deficiencies
  • Metabolic disturbance
  • Menstrual disfunction

Relative Energy Deficiency in SportBut REDS can also have far-reaching behavioural and psychological effects as well, including:

  • Pre-occupation and constant discussion around food
  • Poor sleep patterns
  • Restricting or strict control over food intake
  • Overtraining or struggling to take rest days
  • Impaired judgement, coordination and concentration
  • Recurrent soft tissue injury
  • Irrational behaviour
  • Fear of food and weight gain
  • Severe anxiety
  • Withdrawing or becoming reclusive
  • Reduction in motivation
  • Depression

REDS can have an incredibly adverse long-term effect on athletic performance, including an increased risk of injury and decreased training and performance responses. These effects can include:

  • Decreased muscle strength
  • Decreased endurance performance
  • Impaired judgement
  • Decrease in coordination
  • Decrease in concentration
  • Decrease in glycogen stores
  • Negative impacts on muscle recovery
  • Poor muscle growth
  • Increased risk of injury

WHAT ARE THE LONG-TERM EFFECTS OF REDS?

The majority of our bone density is formed during our teenage years. If our bone density formation is impacted during our adolescence or early in our adult years, it can lead to issues with bone weakness and osteoporosis later on in life.

Longer-term, REDS can also have a negative impact on fertility, thyroid function, cardiovascular function, and mental health.

The good news is that most of the negative consequences of RED-S can be reversed if picked up early.

WHAT ARE THE COMMON MYTHS SURROUNDING REDS?

The common perception that athletes with RED-S have an eating disorder is false.  Although eating disorders are associated with RED-S not all athletes with eating disorders have RED-S and not all athletes with RED-S have an eating disorder.

It’s true to say that athletes with RED-S can present as underweight- but this is not true in all situations. RED-S can exist without the athlete appearing to be underweight.

RED-S is also not something that just female athletes suffer from. All athletes competing in sports with higher training volumes or weight category restrictions are at a higher risk of developing RED-S. This can include athletes competing in sports that can be judged by aesthetics including figure skating, gymnastics and synchronised swimming, and body weight-dependent sports including long-distance running, mountain biking, and cycling, and weight classed sports such as lightweight rowing and marshall arts.

In one study 44% of ultra-endurance runners were identified as being at risk of developing RED-S while 39% of elite female sprinters should signs of RED-S. 

“RED-S can occur in athletes of any competitive status. Among world-class endurance athletes, 37% of females presented with amenorrhea and 40% of males with testosterone in the lowest quartile range indicative of RED-S, which is similar to the reported 40% of Australian female athletes competing at the 2016 Rio Olympic games who were identified as at risk of RED-S.  Similarly, among recreational female exercisers, 45% had risk factors associated with RED-S.” (Sports Information Resource Centre).

WHAT SHOULD I LOOK OUT FOR?

The most important piece of advice when it comes to RED-S is – listen to your body. Don’t ignore niggles and definitely don’t skimp on sleep and recovery. You should also:

  • Monitor menstrual cycles
  • Think about your relationship with food and/or exercise
  • Be mindful of your eating patterns: disordered eating to eating disorder.
  • Notice your exercise dependence
  • Monitor your behaviour, mood and sleep patterns
  • Notice change in clothing fit
  • Be aware of growth and development
  • Note injuries, illness and gastrointestinal issues
  • Athletic performance (stagnation-deterioration)
  • Try to be flexible in your approach

WHERE TO GET HELP

We appreciate that talking about many of the symptoms associated with RED-S can be difficult.  Our Sports Naturopath and Holistic Coach Kate Smyth has extensive lived experience with REDS in elite sport and provides a discreet and confidential platform to share your concerns.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

 

Resources

Athletes in Balance 

Train Brave 

Butterfly Foundation 

Eating Disorders 

The Sport Information Resource Centre: SIRC,

Berg, S. E. (2021). The Relationship between Eating Disorders, Weight Control Methods, and Body Satisfaction in Elite Female Runners Competing at the 2020 US Olympic Marathon Trials.

Sygo, J., Coates, A. M., Sesbreno, E., Mountjoy, M. L., & Burr, J. F. (2018). Prevalence of indicators of low energy availability in elite female sprinters. International Journal of Sport nutrition and exercise metabolism28(5), 490-496.

 

 

Low zinc symptoms

The high demands of sports make athletes more vulnerable to illness, with 65% of athletes experiencing regular colds and infections. Zinc is a key nutrient required for immunity and keeping an eye out for low zinc symptoms, may just make the difference between being sick or great performances.

It can be so frustrating to put in many months of hard training only to be sidelined during a taper or on race day by heaving lungs, debilitating fatigue, and a pounding headache. Sports performance is materialised through consistency, akin to writing a book, one page at a time. Forced breaks from training due to illness detract from progress and drains confidence. Not all athletes rest when unwell and opt to “push through” the illness only to experience prolonged symptoms and more disruption to competition. 

Building a robust immunity is all part of a holistic approach to coaching and training. So how do you minimise your risk of getting sick? 

There are many nutrients that contribute to a healthy immune system as discussed previously.

Athletes may be more susceptible to being deficient in zinc because exercise, particularly strenuous and endurance exercise, increases zinc requirements, encourages zinc loss through sweating, and changes zinc transportation and metabolism.  

In our opinion, zinc plays the most critical role in supporting athletes and immunity.

Zinc’s role in hormone control and immunity

Zinc regulates several crucial processes in both your innate and adaptive immune system. Being deficient in zinc can lead to athletes becoming more susceptible to respiratory illness, particularly in the colder months. 

Apart from zinc’s well-established role in immunity, this mineral, contributes to protein structure, regulates gene expression, metabolism and is the second most abundant trace element in the body after iron.  Zinc deficiency can impact an athlete through hormone dysregulation (testosterone, thyroid, and growth hormones to name a few) and may affect erectile function and fertility.

Zinc is essential to maintaining optimum performance due to its function in metabolism and healthy cell division – essential in repairing damaged tissues after you exercise.

Studies show being deficient in zinc can lead to a reduction in the number of fast-twitch muscle fibres and muscle mass and performance decline.  For Masters Athletes this is of particular relevance as aging is also associated with sarcopenia, the age-related loss of muscle mass, muscle strength, and physical performance.

Zinc also helps maintain blood sugar control and assists with muscle contraction during exercise, glucose metabolism, and glycogen storage.

Zinc also plays an essential role in antioxidant production by increasing antioxidant activity and inhibiting free radical production that may damage tissues, impact liver function, and prevent muscle exhaustion.

Low zinc symptoms

Apart from recurrent colds and other infections, there are many low zinc symptoms.

*Anxiety and depression

*Hormone imbalances

*Poor concentration

*Stomach pain and gas

*Slow healing

*White spots on nails

*Skin issues and acne

*Loss of appetite

*Loss or change of smell

*Changes in taste

Zinc rich foods

The most concentrated sources of zinc are contained in animal products, particularly meat, seafood and dairy.   Vegan and plant-based athletes may be more susceptible to zinc deficiency due to reduced dietary intake, lowered gastric acid (which is zinc-dependent) and higher phytate consumption.  Phytates found in plant-based zinc-rich foods such as legumes can inhibit zinc absorption. 

Soaking nuts and seeds and legumes prior to cooking is a great way to minimise this issue and allow for greater micronutrient absorption.

Iron absorption 

The gastrointestinal tract plays an important role in maintaining total body zinc homeostasis by regulating zinc absorption and excretion. In order to boost your absorption, the addition of a probiotic may be beneficial.

In certain situations, zinc supplementation may be recommended. The amount ingested, supplement form, and the timing of zinc matters. Speak to a naturopath or nutritionist with an interest in sport before self-prescribing. You’ll definitely want to avoid zinc toxicity. High zinc levels can have a detrimental impact on your performance through anaemia, copper and iron deficiency and unpleasant gastrointestinal side effects.

Zinc testing

Serum blood testing is used by some conventional practitioners to determine zinc levels in the body. Keep in mind 60% of zinc is stored in muscle and 30% in bone therefore serum may not be the best measure of zinc homeostasis.  A mineral test can be another alternative method of assessing zinc levels and is available through our clinic as explained here.

If you need help building a robust immune system, book an appointment with our naturopath.

 

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

References

  1. N. Walsh.  Nutrition and Athlete Immune Health: New Perspectives on an Old Paradigm.
    2019 Nov 6. doi: 10.1007/s40279-019-01160-3.
  2. A. Venderley, W.Campbell. Vegetarian diets : nutritional considerations for athletes.
    2006;36(4):293-305. doi: 10.2165/00007256-200636040-00002.
  3. J.Hernández-Camacho, C. Vicente-García, D. Parsons, I. Navas-Enamorado.  Zinc at the crossroads of exercise and proteostasis.
    2020, 101529, ISSN 2213-2317. doi.org/10.1016/j.redox.2020.101529.
  4. P. Trumbo, A.  Yates, S. Schlicker, M. Poos. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc.
    2010 March.101(3):294-301.
    doi: 10.1016/S0002-8223(01)00078-5.
  5. A. Baltaci, R. Mogulkoc, S. Baltaci. Review: The role of zinc in the endocrine system.
    2019 Jan;32(1):231-239. PMID: 30772815.
  6. P.Ranasinghe, S. Pigera, P. Galappatthy, G. Katulanda, & R. Constantine. Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications.
    23
    (1), 44.  doi.org/10.1186/s40199-015-0127-4
  7. M. Hambidge, N. Krebs. Zinc metabolism and requirements.
    2001;22(2):126-132  doi: 10.1177/156482650102200202
Nutrients for immunity

The immune system is a busy network throughout our entire body including cells, vessels, lymphoid tissue, nodes, nodules, bone marrow, and organs.

Our thymus gland helps regulate the immune system, and is the storage tank for immune cells responsible for eradicating viruses.

The spleen recycles iron, captures and destroys pathogens and initiates the maturation and release of immune cells when the body is required to fight infections.

The lymphatic system is a filtering system removing waste and obsolete immune cells from our entire body through a system of lymph nodes and vessels. Mucous membranes in our respiratory system and gastrointestinal tract, tonsils, and adenoids also contain lymphatic tissue.

Our immune system would not be complete without the gut-associated lymphoid tissue (GALT) – and Peyer’s patches in the small intestine.  Nearly 80% of our immunity is actually based in the digestive tract.

A robust immunity has many lines of defence

Our immune system is equipped with a multi-tiered response to battle with foreign invaders 24/7.

The innate immune system includes a  first line of defence which prevents pathogens (germs) from gaining entry into the body. The skin, mucous membranes, gastrointestinal tract and secretions (mucous, vaginal secretions, bile, gastric acid, saliva, tears, and sweat) all play an important role.

The next line of defence houses our infection-fighting cells such as natural killer cells and phagocytes which act like Pac-men against microbial invaders. The immune system also releases antimicrobial proteins such as complement and interferon which interfere with virus replication and cell-to-cell communication.

Our adaptive immune system also keeps a record of every germ it has ever defeated so it can recognise and destroy the microbe quickly if it enters the body again.

A balanced whole-foods diet containing real foods rich in antioxidants, vitamins, and minerals can help build robust immunity.

Key vitamins and minerals to boost immunity
Vitamin C

Vitamin C builds resistance to infection and stimulates immune cells and proteins which help eradicate viruses.

Vitamin C-rich foods include veggies such as red capsicum, broccoli, cabbage, cauliflower, spinach, parsley, and sweet potato. Fruits such as kiwi, berries, pawpaw, pineapple, citrus, guava, broccoli, mango, currants are great sources of vitamin C.  Rosehip, camu camu, and Kakadu plum provide concentrated powdered forms of vitamin C widely available through health food shops. One we recommend is Wild C.

In some circumstances, vitamin C supplementation may be beneficial.  Having small amounts of vitamin C throughout the day may reduce the likelihood of any gastrointestinal side effects.

Quercetin

Quercetin is a flavonoid reported to have antiviral properties in numerous studies. Vitamin C and quercetin taken together, has a  synergistic antiviral action.

Quercetin is contained in apples, honey, raspberries, strawberries, blackberries, onions, red grapes, cherries, citrus fruits, and green leafy vegetables.

Zinc

Zinc plays a crucial role in supporting immune cell production and modulation of immunity.3, 4 Common zinc deficiency signs include frequent and prolonged colds, and poor wound healing, acne, dermatitis, low stomach acid, poor smell or taste. White spots on nails may also be a sign of zinc deficiency.

There are many factors that may contribute to zinc deficiency. Inadequate dietary intake, poor absorption, loss through perspiration, and high iron and copper levels can have a detrimental impact on zinc homeostasis.

Foods rich in zinc include oysters, seafood, tahini, peanuts, liver, eggs, nuts, seeds, and legumes. Soaking and sprouting legumes, nuts and seeds helps to break down the phytates that may bind to zinc and reduce zinc’s bio-availability.

Keep in mind there are many other nutrients that support the immune system, however, zinc, vitamin c, and quercetin are key when it comes to fighting viruses.

Gut health

Gut health plays an important role in immunity.

Including prebiotic (skins on vegetables and fruit, psyllium husks, slippery elm, etc.) and probiotic-rich foods (kimchi, sauerkraut, kefir, tempeh, kombucha, miso, and quality yogurt) can improve your immunity. Probiotics can also improve sports performance as discussed on our blog here.

Don’t self-sabotage your immunity

Avoid substances that reduce immune system function.

Diets high in saturated fats, sugars, and refined carbohydrates have been shown to contribute to the prevalence of obesity and type 2 diabetes, and increase the risk for severe COVID-19 pathology and mortality. 5 Studies suggest sugar reduces the capacity of white blood cells for up to 5 hours within 1 hour of consumption. Sugar can also feed fungi such as candida which deplete the immune system and increase fatigue.

Caffeine or other stimulants can stress your nervous system, reduce sleep and deplete stores of zinc, and magnesium.  Switching your second coffee for a green tea has been shown to improve innate immunity.

Enjoy alcohol in moderation. Excessive alcohol may also suppress the immune system and increased susceptibility to respiratory pathogens and lung injury.

Sleep has an influence on immunity maintenance and immunological response and can increase your risk of picking up infections. Obtain at least 8 hours of sleep every night, ideally hitting the pillow before 10 pm.

Chronic stress depletes the immune system. Focus on what you can control and avoid getting caught up in daily news. Your mindset matters in times of stress and unpredictability. Consider ways of dispelling stress such as meditation, mindfulness, reading, or creative activities. Don’t forget laughter has been shown to improve immunity and mental health.

Keep your exercise balanced and consistent. Regular exercise improves immunity however excessive exercise of long duration and intensity can make athletes more susceptible to respiratory infections.

If you feel you need to boost your immunity, feel free to contact us and let’s discuss how we can help.

 

References

1.  Carr AC, Maggini S. Vitamin C and Immune Function. (2017) Nutrients. 3;9(11):1211.https://pubmed.ncbi.nlm.nih.gov/29099763/

2. Askari et al., Quercetin- an overview. (2017). Nutrient Delivery https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/quercetin

3. Maywald M, Wessels I, Rink L. Zinc Signals and Immunity. Int J Mol Sci. 2017 Oct 24;18(10):2222. doi: 10.3390/ijms18102222.

4. Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, Tsatsakis A, Tinkov AA. Zinc and respiratory tract infections: Perspectives for COVID‑19 (Review). Int J Mol Med. 2020 Jul;46(1):17-26. doi: 10.3892/ijmm.2020.4575.

5. Butler MJ, Barrientos RM. The impact of nutrition on COVID-19 susceptibility and long-term consequences. (2020) Brain Behav Immun. Jul;87:53-54. doi: 10.1016/j.bbi.2020.04.040.

6. Does Sugar Weakn the Immune System? Biotics Research. 2020. www.blog.bioticsresearch.com

7. Chowdhury P, Barooah AK. Tea Bioactive Modulate Innate Immunity: In Perception to COVID-19 Pandemic. Front Immunol. 2020 Oct 28;11:590716. doi: 10.3389/fimmu.2020.590716.

8. Yeligar SM, Chen MM, Kovacs EJ, Sisson JH, Burnham EL, Brown LA. Alcohol and lung injury and immunity. Alcohol. 2016 Sep;55:51-59. doi: 10.1016/j.alcohol.2016.08.005

9. Silva ESME, Ono BHVS, Souza JC. Sleep and immunity in times of COVID-19. Rev Assoc Med Bras (1992). 2020 Sep 21;66Suppl 2(Suppl 2):143-147. doi: 10.1590/1806-9282.66.S2.143.

10. Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res. 2014 May;58(2-3):193-210. doi: 10.1007/s12026-014-8517-0.

11. Yim J. Therapeutic Benefits of Laughter in Mental Health: A Theoretical Review. Tohoku J Exp Med. 2016 Jul;239(3):243-9. doi: 10.1620/tjem.239.243

12. Cerqueira É, Marinho DA, Neiva HP, Lourenço O. Inflammatory Effects of High and Moderate Intensity Exercise-A Systematic Review. Front Physiol. 2020 Jan 9;10:1550. doi: 10.3389/fphys.2019.01550

probiotics

If you’re training hard, but don’t feel like you’re improving your athletic performance, then enriching your gut health through choosing the best probiotics to complement your gut microbiome could be the missing ingredient.

What are probiotics?
Probiotics are live microorganisms, mainly bacteria, and yeasts, that naturally reside in your gut (microbiome) and convey a health benefit. Your microbiome typically contains over 1000 different organisms, both beneficial and pathogenic.

Because a healthy gut microbiome strengthens your immune system and enhances your recovery from fatigue and overtraining, taking care of your gastrointestinal system is vital. This will enhance your general health and help to improve your athletic performance.

We consume probiotics via gut-friendly fermented foods such as yogurt, kefir, kimchi, kombucha, and sauerkraut, and commercially produced supplements.

Probiotics shouldn’t be confused with prebiotics. Prebiotics are carbohydrates and fibres such as inulin and other fructo-oligosaccharides found in foods like artichoke, bananas, and asparagus. The microorganisms in your gastrointestinal tract use prebiotics as fuel.

Supplements called ‘synbiotics’ contain both prebiotic molecules and probiotic organisms.2 Synbiotics offer a dual-action strategy for even greater health benefits. A diet rich in pre and probiotic foods support your gut to develop a robust immunity.

Understanding probiotics for runners

As the popularity of ‘gut health’ supplements for athletes increases, a basic knowledge of the assortment of beneficial probiotics in your supplement is helpful.

Probiotics are classified by their unique microorganism strain, which includes the genus, species, subspecies (if applicable), and an alphanumeric strain designation.

The seven core probiotic genera are Lactobacillus, Bifidobacterium, Saccharomyces, Streptococcus, Bacillus, Enterococcus, and Escherichia.

Lactobaccillus rhamnosus, Lactobaccillus acidophilus, and Saccharomyces boulardii are common commercially produced probiotic and yeast species. This ‘probiotic tree’ diagram highlights several commercially available probiotic strains.

Research on specific probiotic strains has expanded our knowledge of the health benefits and targeted treatments of probiotics for athletes. However, probiotic supplementation may not be appropriate or necessary for all athletes.

Probiotics for Runners

Certain probiotic species impart significant anti-inflammatory effects within your gut. In particular, Lactobacillus strains produce lactate, which is then converted into short-chain fatty acids by your gut bacteria. Butyrate is a pivotal short-chain fatty acid for intestinal homeostasis due to its anti-inflammatory properties and beneficial effects on intestinal cells, gut barrier function, and permeability.

Over thirty years of research supports the widespread use of Lactobacillus rhamnosus GG (LGG) for common gut-related issues such as diarrhoea, antibiotic use, infections, e.g., Clostridium, irritable bowel syndrome, inflammatory bowel disease, respiratory tract infections, and allergies in athletes.

Studies also show certain probiotics can improve vitamin D levels in athletes.

LGG along with L. acidophilus, and B. bifidum improve exercise-induced gastrointestinal symptoms. In fact, almost 60%of runners and endurance athletes who train intensely experience gut microbiome upsets and unwanted symptoms. Probiotics offer relief by supporting immune function and intestinal cell proliferation and function, as well as shortening the duration of gastrointestinal symptoms.5

Probiotic strains interact favourably with other probiotic species in the microbiome to improve the overall balance and composition of beneficial bacteria in your gut. For example, Lactobacillus fermentum (PCC) can increase the Lactobacillus genus seven-fold after 11 weeks of supplementation.

Probiotic supplements can help regulate blood sugar levels and maintain energy for training and performance. Also, yeast probiotics such as Saccharomyces cerevisiae are widely used to suppress the overgrowth of Candida or thrush fungal infections.

Lastly, new research demonstrates that probiotics can enhance sports performance. Runners taking Bifidobacterium longum (OLP-01) for five weeks significantly increased their running distance in a timed test. Bifidobacterium longum (OLP-01) also provided other health benefits such as increasing the abundance of gut microbiota in the runners.

There are a few final points to keep in mind before you add probiotics to your diet.

First, the quality of your probiotic supplement may vary significantly. Be careful about your choices as the label “probiotic” doesn’t necessarily mean this option will be suitable for your microbiome.

Second, a probiotic combination or an inappropriate supplementation duration may exacerbate unwanted symptoms in some situations. Therefore, it’s vital to consume high-quality, well-characterised live probiotics that deliver a therapeutic dose over an effective length of time.

Finally, the best probiotics for endurance athletes are selected case by case to improve your performance, recovery, immune and gut health. Be sure to seek professional advice for the most suitable probiotic therapy for your training and health circumstances.

Unsure if a probiotic supplement could help you?
Speak with Athlete Sanctuary’s sports naturopath and nutritionist about your health and sports performance goals today.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

References

  1. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014;11:506-14.
  2. World Gastroenterology Organisation. Probiotics and prebiotics. 2017.
  3. Capurso, L. (2019). Thirty years of Lactobacillus rhamnosus GG: a review. Journal of Clinical Gastroenterology53, S1-S41. doi: 10.1097/MCG.0000000000001170
  4. Leite, G. S., Student, A. S. R. M., West, N. P., & Lancha Jr, A. H. (2019). Probiotics and sports: A new magic bullet? Nutrition60, 152-160. https://doi.org/10.1016/j.nut.2018.09.023
  5. Salarkia, N., Ghadamli, L., Zaeri, F., & Rad, L. S. (2013). Effects of probiotic yogurt on performance, respiratory and digestive systems of young adult female endurance swimmers: a randomized controlled trial. Medical Journal of the Islamic Republic of Iran27(3), 141. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917487/
  6. West, N. P., Pyne, D. B., Cripps, A. W., Hopkins, W. G., Eskesen, D. C., Jairath, A., … & Fricker, P. A. (2011). Lactobacillus fermentum (PCC®) supplementation and gastrointestinal and respiratory-tract illness symptoms: a randomised control trial in athletes. Nutrition Journal10(1), 1-11. https://nutritionj.biomedcentral.com/articles/10.1186/1475-2891-10-30
  7. Gaziano, R., Sabbatini, S., Roselletti, E., Perito, S., & Monari, C. (2020). Saccharomyces cerevisiae-based probiotics as novel antimicrobial agents to prevent and treat vaginal infections. Frontiers in Microbiology11, 718. https://doi.org/10.3389/fmicb.2020.00718
  8. Lin, C. L., Hsu, Y. J., Ho, H. H., Chang, Y. C., Kuo, Y. W., Yeh, Y. T., … & Lee, M. C. (2020). Bifidobacterium longum subsp. longum OLP-01 Supplementation during Endurance Running Training Improves Exercise Performance in Middle-and Long-Distance Runners: A Double-Blind Controlled Trial. Nutrients12(7), 1972. doi:10.3390/nu12071972 
  9. Probiotic professionals

 

Do you want to know more about Robust Immunity?

Before we dive into how to maintain robust immunity in athletes, let’s do a quick recap on how our immune system works.

The immune system is a busy network throughout our entire body including cells, vessels, lymphoid tissue, nodes, nodules, bone marrow and organs.

Bone marrow is where millions of new blood cells are produced every day. Bone marrow also serves as the site where cells are stored and matured before they enter the circulatory system.

Our immune system would not be complete without the gut-associated lymphoid tissue (GALT) – and Peyer’s patches in the small intestine.  Nearly 80% of our immune system is actually based in the digestive tract.

The thymus gland is a small gland known as the “seat of courage” and is located behind the breastbone. Our thymus helps regulate the immune system and is a storage tank for immune cells such as lymphocytes and monocytes responsible for eradicating viruses.

Our spleen is an oval shaped mass of lymphatic tissue which acts as a large blood filter. It recycles iron, captures and destroys pathogens and initiates the maturation and release of immune system when the body requires it (e.g. to fight infections).

Our lymph nodes act as a filtering system for the clear fluid called lymph which contains waste and immune cells. The lymphatic vessels act as the super highway carrying lymph between the 600 lymph nodes in our body located in our limbs, armpits, abdomen and groin.

Lymphatic nodules also contain lymphatic tissue and are positioned on mucous membranes in our respiratory system and gastrointestinal tract, tonsils and adenoids.

The immune system has many lines of defence.

 Our immune system is equipped with a multi-tiered response approach. A healthy immune system is always ready (24-7) to battle with foreign invaders.

The immune system includes our first line of defence which acts like the bouncers of your body deciding what can come in and what can’t such as the skin, mucous membranes, gastrointestinal tract and secretions like mucous, acidic vaginal secretions, bile, gastric acid (HCL), saliva, tears, and sweat.

The next line of defence kicks in when the bouncers have gone on a smoko and a pathogen is detected by the body. This part of our system also houses our infection-fighting cells such as our natural killer cells and phagocytes which act like Pac-men against microbial invaders. Our immune system also releases antimicrobial proteins such as complement and interferon which interfere with virus replication and protein which co-ordinate cell-to-cell communication. This part of the system deals with viruses, fungi, parasites etc.

Our immune system also keeps a record of every germ it has ever defeated so it can recognise and destroy the microbe quickly if it enters the body again.

Maximise what’s needed for robust immunity in athletes

In addition to enjoying a balanced wholefoods diet containing real foods rich in colour and vitality colourful rainbow on your plate, there are key foods to include in your diet you want to enhance your immune system.

The big guns

Vitamin C builds resistance to infection and stimulates immune cells and proteins such as interferon which help eradicate viruses. Vitamin C rich foods include veggies such as red capsicum, spinach, parsley and sweet potato. Fruits such as kiwi, berries, paw paw, pineapple citrus, guava, broccoli, mango, and currants are great sources of vitamin C.  Rosehip, Camu Camu, and Kakadu plum provide concentrated forms of vitamin C and can be found in powdered forms such as Wild C.

To optimise absorption vitamin C is best ingested with bioflavonoids. Lots of foods rich in vitamin C also contain bioflavonoids but they can also be found in celery, garlic, red onions, garlic, grapes, apricots and green tea.  In some circumstances, it is beneficial to supplement vitamin C. Vitamin may cause gastric upset in large doses. Dividing the doses throughout the day can reduce the side effects.

Zinc is responsible for supporting immune cell production and proliferation which fight off infections such as viruses. Common deficiency signs may include frequent colds, extended recovery periods, poor wound healing, low stomach acid changes in smell or taste and white spots on nails.

Zinc is lost through perspiration and displaced when other nutrients such as iron and copper are high as they share a common carrier in the body. Zinc supplementation should be under the guidance of a qualified practitioner to get the right dose and timing correct because high doses can impact other nutrients ( iron and copper) which may then contribute to immune dysfunction.

Foods rich in zinc include pumpkin seeds, fresh local seafood shellfish and oysters, tahini, peanuts, liver, eggs, nuts and seeds and legumes. Just remember to soak or sprout legumes, nuts and seeds to break down the phytates that may bind to zinc and reduce zinc’s bio-availability.

Obtaining adequate protein will supply the amino acids for antibodies and immune protein production.

Keeping well hydrated is also important for our first line of defence. Ginger and lemon drinks are a great alternative to water.

Immune modulators

Vitamin D, A, E and selenium are important antioxidants, immune modulators and help maintain healthy mucus membranes.  Exposing your unprotected skin to direct sunshine for 15-20 minutes daily will help boost vitamin D levels. Vitamin A-rich foods include cod liver oil, orange coloured foods such as carrots, sweet potato and apricots and kohlrabi. Vitamin E is found in nuts and seeds (such as sunflower seeds), eggs, and dark green leafy vegetables. Selenium is rich in Brazil nuts, alfalfa, meat eggs, onion, garlic and broccoli.

Shiitake and reishi mushrooms and green tea are also supportive of the immune system and build robust immunity in athletes.

Look after your gut health with pre and probiotic rich foods (think fibre and fermented foods like kimchi, sauerkraut, kefir, tempeh, kombucha, and quality yogurt). Choline found in lecithin from soy, eggs, beef, pork, olives, and broccoli, assists with the formation of the mucosal layer in the respiratory system and gut.

Include herbs and spices in your cooking that support healthy immune responses. Turmeric, ginger, Ceylon cinnamon (Cinnamomum verum), Cayenne peppers, garlic, horseradish, parsley, garlic, onions, oregano and thyme are all good choices.

What to avoid for robust immunity in athletes

Avoid substances that reduce immune system function.

1. Studies show sugar reduces the capacity of white blood cells within 1 hour of consumption and can last for up to 5 hours afterwards. Sugar can also feed some pathogens. Skip the middle isles of a supermarket where the processed foods are and spend more time selecting fresh foods.

2. Avoid too much caffeine or other stimulants that will stress our nervous system, impact on sleep but also deplete stores of zinc, and magnesium which we need in times of stress.

3. Avoid excessive alcohol and it may also suppress the immune system.

4. Avoid late nights binging on Netflix and obtain adequate sleep. This means at least 8 hours per night ideally hitting the pillow before 10pm. Sleep deprivation can increase your risk of picking up infections and reduce robust immunity in athletes.

5. Avoid or minimise unnecessary stress. Focus on what you can control and let go of the rest. Your mindset matters in times of stress and unpredictability. Be as flexible as you can with everything including your training, work, family and routine. Stress heightens cortisol which in turn smashes your infection-fighting cells.  Consider ways of dispelling stress other than more exercise such as meditation, mindfulness, relaxing activities such as reading or creative activities and watching comedies rather than more bad news stories.

6. Avoid over-exercising. Keep your exercise balanced. Robust immunity in athletes requires regular exercise, however moderation is the key. Too much exercise of long duration and intensity can make athletes more susceptible to respiratory infections.  For more information on exercise and its impact on the immune system click here 

For further information on the suitability of these measures for your particular situation, contact us for an individual assessment.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

accurate pathology tests

In this article, we discuss how to obtain accurate pathology tests. Whilst this article is not meant to serve as a diagnostic tool, it may be helpful to better understand what basic pathology tests are useful and how to prepare yourself so you get the most accurate results.

Pathology test results should always be considered in conjunction with symptoms, a thorough physical examination, and discussed during an appointment so that the context and relevance of your results can be determined. One abnormality in pathology tests does not tell much of your health picture, however, patterns of pathology tests can provide a holistic picture of your overall health, your absorption, and digestion of key nutrients and provide warning signs that require further investigation.

WHAT PATHOLOGY TESTS ARE MOST USEFUL?

Your GP or naturopath can arrange pathology tests for you. Exactly which pathology tests you require, will need to be determined by your healthcare practitioner. As a good starting point, I suggest the following tests for my patients:

*Full blood count and hematology- provides a general picture of your immune system, red blood cells and overall health

*Liver function tests (LFTs)- provide some clues as to how your liver is working and if your liver is under stress.

*Electrolytes– including potassium, sodium, and other key electrolytes required for sports performance and optimal health

*Fasting blood glucose- is a general marker that indicates how well your body is modulating your blood sugar. Issues with blood sugar stabilisation may cause symptoms such as sugar cravings, frequent urination, fatigue, and energy drops after meals.

*C- reactive protein (CRP) is an inflammatory marker that is useful when interpreted in conjunction with iron studies. Iron storage may be impacted by states of high inflammation.

*Iron studies- provides information on your iron storage (ferritin), the protein carriers for iron (transferrin), and how effectively your body is saturating these carriers and transporting iron around your body (transferrin saturation).

*Thyroid hormones- TSH, T3 and T4 provide information on how your thyroid is functioning and can be an early warning sign of autoimmunity and nutrient deficiencies such as iodine, selenium, tyrosine and zinc

*Vitamin B12 ( active and inactive) is also suggested for plant-based patients or athletes who infrequently consume red meat.

*If you are prone to mental health issues (especially seasonal sadness/ low mood), autoimmunity, frequent colds, bone health issues, or hormonal imbalances vitamin D, copper and serum zinc may also be useful markers.

Tests may be repeated every few months to ensure a patient is responding to treatment and improving nutrient absorption through targeted nutrition approaches.

How to get the most accurate pathology tests

To get the most out of your pathology tests, it is recommended your prepare appropriately.

DO

  •  fast for 12-16 hours (have dinner and then postpone breakfast until after your blood draw).

AVOID

  • strenuous exercise for a minimum of 24 hours. Ideally, at least 48 hours if possible.  This includes running, cycling, or strength training. Most patients find it easiest to do a blood test the morning after a rest day.
  • obtaining the blood draw when feeling unwell such as with a cold or flu when checking iron studies as infection may influence your test results
  • alcohol or supplements for 24-48 hours prior to your blood tests

We use a number of pathology collection centres across Australia including Clinical Laboratories, Dorevitch, and Nutripath to obtain accurate pathology results. We also refer to functional testing such as mineral testing completed through Interclinical Laboratories.

 

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

Natural immune support such as herbal medicines can provide effective solutions to athletes who suffer from recurring colds and flu’s and other immune issues. When most people think of issues for athletes they usually think of musculoskeletal injuries such as sprained ankles, pulled muscles, or knee pain, but a recent study suggested immunity issues cause up to 50% of disruption to training or performance in athletes.

According to research, exercise improves immunity at moderate intensity but impairs immune function at high intensity (and duration) making many endurance and elite athletes more susceptible to respiratory infections.  Infection, such as fever and fatigue, can weaken muscles, impair exercise, and predispose athletes to other injuries. For example, fever impairs coordination, muscle strength, and aerobic power while viral illnesses contribute to tissue wasting and muscle breakdown.

Drugs commonly used to treat the symptoms of infectious diseases have variable impacts. Antibiotics can cause diarrhoea and ongoing gut issues, antihistamines can cause sedation, and many ephedrine-containing compounds like Sudafed are prohibited during competition over certain amounts under the Australian (ASADA) and World Drug Agency Association (WADA) guidelines.

To explain this immunity phenomenon perhaps a recap of how the human immune system is set up may be helpful. There are two parts to the immune system, the Innate Immune System and the Adaptive or Acquired Immune System.

Innate Immune System

The innate immune system includes our first line of defence providing physical barriers such as the skin, mucous membranes, nasal hairs, and eyelashes.  Functional barriers such as the gastrointestinal tract and defence mechanisms such as secretions, mucus, bile, gastric acid, saliva, tears, and sweat also protect us.

This part of our system also houses our infection-fighting cells such as our natural killer cells and phagocytes which act like Pac-men against microbial invaders, and proteins such as tumour necrosis factor which program cell death and cytokines which play roles in cell-to-cell communication.

The complement system is an additional cascade of proteins that “complements” other aspects of the innate immune system. The innate immune system is always ready to battle with foreign invaders, irrespective of whether they have come into contact with the microbial invader before.

Acquired Immune System

The acquired immune system is a collection of cells called T and B lymphocytes, immunoglobulins produced by the lymphocytes, and cytokines that regulate the immune response. Through a complex pathway of intercellular interaction, immunoglobulins are produced after exposure to a new pathogen, so they can recognise the invader the second time around and have an inbuilt immunological memory and enhance the immune response accordingly.

Gut-Associated Lymphoid Tissue (GALT) is a collection of several types of lymphoid tissue that store immune cells, such as T and B lymphocytes and is our major defence mechanism against pathogens entering the digestive system.  Peyer’s patch is a collective of lymphoid cells attached to the gut lining which is the initiation of the immune response when an infection is detected.

Secretory IgA is another substance produced by the acquired immune system produced in all areas where a protective mucosal layer exists such as the digestive, respiratory and urinary tracts to provide front-line defence. It forms the backbone of our immune system because it protects the immunoglobulins from being destroyed and protects the immunoglobulins from invading microbes.

This part of the immune system provides long-lasting protection against anything it has encountered before. When the two systems (innate and acquired) combine, they form an incredible defence against the constant barrage of infectious threats an athlete faces each day.

How does exercise impact on immunity?

So let’s examine how exercise can affect immunity. There is a substantial body of knowledge suggesting moderate exercise of up to 60 minutes at 60% of maximum heart rate improves immune cell counts and salivary IgA concentrations. Studies also show that 61% of new runner’s report fewer upper respiratory tract infections after starting running.   However, there is always a flipside to everything and in the case of exercise, the term moderation is wise to observe.

Intense exercise and prolonged exercise greater than 60 minutes may reduce immunity. While there is no doubt hard efforts increase VO2 max, it also forces most athletes to transition from nose breathing to mouth breathing, bypassing the nasal hairs and turbulent flow that protect the lungs from pathogens.

Inhaling larger volumes of colder and drier air thickens the mucous and disrupts the mucociliary elevator which is like our own inbuilt elevator designed specially to clear mucus from the respiratory tract. Hence why many athletes find they need to do a fair bit of “hoiking” to clear the phlegm during hard efforts in cooler months, especially when coupled with the ingestion of proinflammatory and mucous-producing foods such as dairy, coffee and bananas.

As more foreign particles are deposited in the lower airways, the ability to clear them is diminished, and airway inflammation results. Studies show our natural killer cells and secretory IgA fall after intense or prolonged exercise. The key members of our acquired immune system are also affected by neutrophils and B cell function declining.

With repetitive hard and long sessions that most endurance athletes over the marathon, ultra-marathon, ironman, triathlon or cycling do on a regular basis, hormones such as cortisol, prolactin, adrenaline, and growth hormone are constantly elevated and these also impair cellular immunity.

While most upper respiratory infections start off as viral infections, athletes who develop symptoms that are ongoing may also have a secondary bacterial infection.

What can be done about an underperforming immune system?

Few athletes stop training because they get a few annoying sniffles.  When on a mission, athletes should always seek out a solution to overcome or manage the issue.

At this point, it may be wise to seek help from a healthcare practitioner. Natural medicine has plenty to offer in regards to boosting the soldiers of the immune system. Most people are aware of the immune cell turbo boost vitamin C, and zinc provide but what about nature’s little wonders?

Natural remedies such as garlic and horseradish, Andrographis, Echinacea, Cat’s claw and Astragalus can increase immune cell count and function, and anti-microbial herbs like Thyme, Garlic, Thuja, St John’s Wart or Pelargonium have antiviral and antibacterial properties.

Maintaining digestive system integrity and gut health through quality probiotics will also help support GALT and sIGA in the adaptive immune system. Herbal adaptogens also assist with improving immunity integrity and resilience to future invasions. As with any treatment, these options are not going to be a magic bullet, but they can certainly reduce the severity of the infection, reduce recovery time and get you back to what you love doing. We always suggest athletes listen to their bodies and if needed modify training loads and convalesce to some extent.

Many studies use incorrect dosage ranges and timeframes for herbal medicines, so the evidence may be unclear and confusing to the untrained eye. However, when used in the correct dosage ranges, herbal medicines are viable options for athletes with few side effects. Research shows that seeking treatment quickly can reduce the impact respiratory illness may have on athletic performance.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au

 

Iodine and thyroid hormones

Iodine and thyroid hormones are essential to sports performance and yet many athletes are iodine deficient.

Thyroid hormones perform many key functions in the human body including regulation of body temperature, metabolism and play an important role in how an athlete creates and uses energy. Thyroid hormones bind to receptors on each cell’s membrane surface and inside the cell at the mitochondria where energy is made. Binding activates the cell’s energy and metabolic functions.

Iodine is a key trace mineral stored primarily in the thyroid gland. The thyroid gland produces the key thyroid hormones thyroxine (T4) and triiodothyronine (T3), using iodine and other key nutrients such as selenium and tyrosine.  To further convert thyroid hormones into activated forms the body can use, sufficient levels of magnesium, iron, selenium, vitamin C and zinc are also required.

Key hallmarks of iodine deficiency and low thyroid function in athletes include:

  • Fatigue and low stamina can really cause havoc to an athlete’s training and racing season
  • Lethargy, muscle aches, cramps, pains and weakness
  • Low basal body temperature (temperature first thing in the morning)
  • Intolerance to cold weather
  • Cold hands and feet
  • Slow brain function, poor memory and “foggy” brain
  • Constipation
  • Joint pain
  • Thin, brittle hair or hair loss
  • Dry flaky skin
  • Menstrual disorders and fertility problems
  • Weight gain and slower metabolic rate

Iodine is primarily lost through sweat, although some are also excreted in the urine.  Some studies suggest athletes may lose more iodine through sweat in an hour of vigorous exercise than through their entire daily urine output.  High levels of sweating during exercise can deplete iodine levels and result in dehydration and poor performance.

The recommended iodine intake is 150ug/ day but some studies show on average athletes may lose nearly 50% of this requirement in sweat alone. Athletes living in more humid conditions (even without exercise) can lose a greater amount of sweat than those living in cooler environments.

Athletes performing at high intensity for prolonged periods of time, particularly in a humid environment, have a significantly increased risk of becoming iodine deficient if they don’t pay special attention to replacing this important nutrient.

What else can impact iodine and thyroid function?

It is important to keep in mind there are lots of things that impact the thyroid gland.

Chronic physical or emotional stress and high cortisol will result in elevations of another thyroid hormone called reverse T3 (rT3). Pesky rT3 inhibits our active thyroid hormone T3.

Heavy metals and chemicals, a low carbohydrate diet and fasting and selenium deficiency can also reduce T3 levels.  There are many chemicals and metals in our environment known as “endocrine disruptors” that inhibit healthy thyroid function. Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are common in our environment containments (in soil and food grown in that soil including meat, electronics, electrical cables, paints, plastics, furniture ) which can disrupt thyroid hormone signalling at the receptor level.

Perchlorate found in food and water inhibits the thyroid’s ability to absorb iodine from the bloodstream while long-term consumption of fluoridated drinking water is associated with hypothyroidism (low thyroid function).

Dioxins, BPA (found in cling wrap, drinking bottles and plastics) or bisphenols in tinned foods and plastic containers and plastic wraps, are also endocrine disruptors.

Non-stick cookware, fragrances, detergents, cosmetics and skincare, foods exposed to pesticides and herbicides, flame retardant material, new carpets, furniture and clothing may also be sources of endocrine disruptors.

When a female athlete has excess oestrogen, it may reduce the efficiency of thyroid hormone by 25%. Female athletes with high testosterone levels or insulin resistance may also have reduced thyroid efficiency due to a reduction in the globulin that carries thyroid hormone around the body (thyroid binding globulin) which means not enough thyroid hormone can circulate. But the hormone dance doesn’t stop there.

Low thyroid function due to low iodine or other nutrients can also cause receptor sensitivity issues with other female hormones such as progesterone causing PMS symptoms, irregular periods and fertility issues.

Cortisol up-regulates estrogen and high oestrogen also up-regulates cortisol which increases the binding of T4 up to 3 times, resulting in lower thyroid hormone activity, lowered metabolism and weight gain.

As thyroid hormones influence the tight junctions in the stomach and small intestine, athletes with low iodine and thyroid can also suffer from digestive complaints such as gas, bloating, diarrhoea or constipation and digestive infections.

Approximately 20% of our thyroid hormone T4 is converted to T3 in the gut by bacteria. So if digestion is disrupted and inflammation exists, the conversion will be impacted. Thyroid hormones also influence the tight junctions in the stomach and intestine that prevent large undigested molecules from passing into our bloodstream. Hence why thyroid abnormalities are also associated with leaky gut, food intolerances, constipation, reflux, heartburn, and dysbiosis (gut microbiome imbalance).

Thyroid hormones also influence the foundation of our immune system in the stomach called Gut Associated Lymphoid Tissue (GALT). GALT is made up of several types of lymphoid tissue that store immune cells, such as T and B lymphocytes. The majority of infectious agents invading the human body gain access through the gut and GALT protects us against these pathogens.  Therefore, an athlete can be more susceptible to infections if thyroid hormones are low or iodine deficiency exists. n

Other nutrients have an impact on iodine and thyroid function. Many athletes suffer from anaemia or low iron and believe their fatigue and poor performance may just be iron related. The situation is a double-edged sword as iron deficiency impairs thyroid hormone synthesis and low thyroid function impairs gastric secretions which reduce iron absorption from food.

Another tricky synergy exists between zinc, copper and thyroid function. Zinc is required for T4 and T3 production and therefore zinc deficiency may lead to low gastric secretions and low iron. Zinc and copper also antagonise each other so low zinc may lead to high copper.  Excess copper slows thyroid function and depletes zinc.

Iodine concentration in foods is variable depending on soil concentrations and the amount of fertilizer used with farming methods. Therefore, our food iodine content also varies greatly in grains, meats and vegetables. Although the daily recommended iodine intake is 150ug, it can still be tricky even when eating iodine food sources due to such variability.

Metabolic acidosis is a condition when the body’s pH is too acidic (pH of 7.35 or lower). This may occur in athletes from prolonged exercise at high intensity leading to lactic acid build-up. Chronic metabolic acidosis may decrease T4 and T3 and increase TSH concentrations and may lead to subclinical hypothyroid states.

  1. Tracking athletes’ basal (morning) body temperature can assist with identifying issues with thyroid function. Anything less than 36.4c suggests your thyroid may need some attention.
  2. Athletes should not rely on blood tests to confirm thyroid function status. Under activity of the thyroid gland results in low basal temperatures and symptoms of low thyroid function are not detectable by the standard laboratory tests-thyroid stimulating hormone (TSH), T4 and T3.
  3. Athletes should consume sufficient sources of iodine on a regular basis. Good food sources include seafood (wild sea fish contain more iodine than freshwater fish), kelp and other seaweeds (wakame, Kombu, Nori), kelp noodles, Sushi are a rich source of iodine. Other reasonable sources include milk and yogurt, navy beans, eggs, cranberries, strawberries and some meats.
  4. Since 2009 all packaged bread has added iodine in Australia although freshly baked bread may not disclose the amount added. Iodized salt is also available but keep in mind too much salt is not great for blood pressure and even sea salt and Himalayan salt contains 90% sodium chloride which is not desirable as chloride inhibits iodine absorption.
  5. Be mindful of high intake of goitrogenic vegetables. The cabbage family including cabbage, kale, broccoli, cauliflower, Brussels sprouts, radishes, turnips, watercress, spinach contain isothiocyanates (goitrogens) which may block the uptake and utilisation of iodine in the thyroid gland. Cooking these vegetables reduces the goitrogens and the likelihood of their impact.
  6. Although controversial, some evidence suggests soy supplements such as soy protein powders should be avoided if you have been diagnosed with low thyroid function as they may also reduce the genetic expression of the enzymes needed to produce thyroid hormones.
  7. Get your vitamin D levels checked. Vitamin D deficiency is common in Australia and in athletes with low body fat this issue can be even more prevalent as Vitamin D is stored in fat cells. Vitamin D is associated with hypothyroidism and thyroid autoimmune conditions while studies show serum vitamin D > 125 is associated with a 30% reduced risk of hypothyroidism.
  8. Get your hormones, cortisol, iron, zinc, copper and iodine levels checked.
  9. Improve your gastric acid secretions by consuming bitter foods (endive, rocket, radicchio, chicory, dark chocolate) on a regular basis or sip lemon in water or apple cider vinegar before meals.
  10. Reduce your exposure to endocrine disruptors by drinking filtered water, installing filters on shower heads, choosing natural water sources to swim in rather than chlorinated pools, eating pesticide-free or ideally organic foods, choosing organic personal care products, cosmetics and detergents, avoiding storage of food in plastics and instead use wax wraps and choose low emitting products when renovating or building your home.

If you suspect you may be suffering from iodine deficiency or reduced thyroid function, consider making an appointment with the Athlete Sanctuary to help navigate your recovery process.

About the Author: Kate Smyth is a Sports naturopath, nutritionist and female-centric running coach. She is the founder of the Athlete Sanctuary- a holistic healthcare clinic for athletes of all levels and sporting codes. Kate has a thirst for knowledge with two bachelor’s and a master’s degree under her belt. She has been involved in sports for many decades and competed for Australia in the Commonwealth Games and Olympic Games marathons with a personal best time of 2 hours 28 minutes. For more information visit www.https://https://athletesanctuary.com.au/wp-content/uploads/2023/03/normatec-3-lower-body-system-thumb_720x-1.webp.com.au/wp-content/uploads/2020/05/Seed-Cycle-Blends-scaled-1.jpg.com.au